{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "ExecuteTime": { "end_time": "2017-03-02T11:34:48.173281", "start_time": "2017-03-02T11:34:47.125539" }, "collapsed": false, "deletable": true, "editable": true, "execution": { "iopub.execute_input": "2023-11-28T22:02:35.945248Z", "iopub.status.busy": "2023-11-28T22:02:35.944584Z", "iopub.status.idle": "2023-11-28T22:02:36.711830Z", "shell.execute_reply": "2023-11-28T22:02:36.710611Z", "shell.execute_reply.started": "2023-11-28T22:02:35.945191Z" }, "jupyter": { "outputs_hidden": false }, "run_control": { "frozen": false, "marked": true, "read_only": false } }, "outputs": [], "source": [ "import atmPy.aerosols.size_distribution.sizedistribution as atmsd" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "execution": { "iopub.execute_input": "2023-11-28T22:13:52.740084Z", "iopub.status.busy": "2023-11-28T22:13:52.739827Z", "iopub.status.idle": "2023-11-28T22:13:52.744377Z", "shell.execute_reply": "2023-11-28T22:13:52.743756Z", "shell.execute_reply.started": "2023-11-28T22:13:52.740055Z" } }, "outputs": [], "source": [ "import warnings\n", "warnings.simplefilter('ignore')" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true, "run_control": { "frozen": false, "read_only": false } }, "source": [ "# SizeDist_LS - a layer series (aka vertical profile) of size distributions" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "SizeDist_TS is a subclass of SizeDist with all its properties methods, etc. Here we will mostly focus on what is unique to the SizeDist_TS class." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Create instance" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### simulate a sizedistribution" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "execution": { "iopub.execute_input": "2023-11-28T22:13:58.989016Z", "iopub.status.busy": "2023-11-28T22:13:58.988358Z", "iopub.status.idle": "2023-11-28T22:13:59.061093Z", "shell.execute_reply": "2023-11-28T22:13:59.060272Z", "shell.execute_reply.started": "2023-11-28T22:13:58.988959Z" } }, "outputs": [], "source": [ "sd = atmsd.simulate_sizedistribution_layerseries(diameter=[10, 2500],\n", " numberOfDiameters=30,\n", " heightlimits=[0, 6000],\n", " noOflayers=50,\n", " layerHeight=[500.0, 4000.0],\n", " layerThickness=[100.0, 300.0],\n", " layerDensity=[1000.0, 5000.0],\n", " layerModecenter=[200.0, 800.0],\n", " widthOfAerosolMode=0.2,)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### format your own data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`data` should have a similar structure as below. However, column names are not required as they are calculated based on `bins`" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2023-11-28T22:03:41.045795Z", "iopub.status.busy": "2023-11-28T22:03:41.044988Z", "iopub.status.idle": "2023-11-28T22:03:41.102347Z", "shell.execute_reply": "2023-11-28T22:03:41.101162Z", "shell.execute_reply.started": "2023-11-28T22:03:41.045741Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
bincenters11.04863813.36584216.16902819.56011923.66241628.62507834.62854641.89110850.67682961.305159...411.502887497.806397602.210134728.510216881.2989091066.1316081289.7288231560.2205441887.4418432283.290476
30.03.052113e-123.131145e-112.707518e-101.973355e-091.212285e-086.277254e-082.739684e-071.007852e-063.125064e-068.167451e-06...1.003399e-054.000585e-061.344432e-063.808201e-079.092150e-081.829696e-083.103537e-094.437113e-105.346995e-115.431060e-12
90.04.276988e-114.387737e-103.794100e-092.765302e-081.698799e-078.796444e-073.839175e-061.412324e-054.379215e-051.144522e-04...1.406084e-045.606101e-051.883980e-055.336510e-061.274101e-062.563990e-074.349049e-086.217817e-097.492852e-107.610656e-11
150.04.181474e-104.289750e-093.709370e-082.703547e-071.660862e-068.600002e-063.753438e-051.380784e-044.281419e-041.118962e-03...1.374683e-035.480906e-041.841907e-045.217335e-051.245648e-052.506731e-064.251926e-076.078961e-087.325522e-097.440695e-10
210.02.852166e-092.926021e-082.530146e-071.844078e-061.132867e-055.866026e-052.560205e-049.418269e-042.920338e-037.632395e-03...9.376656e-033.738503e-031.256357e-033.558723e-048.496515e-051.709831e-052.900221e-064.146434e-074.996708e-085.075267e-09
270.01.357295e-081.392441e-071.204051e-068.775639e-065.391110e-052.791537e-041.218356e-034.481986e-031.389737e-023.632120e-02...4.462183e-021.779087e-025.978779e-031.693533e-034.043340e-048.136780e-051.380163e-051.973214e-062.377844e-072.415229e-08
..................................................................
5730.03.630329e-241.292883e-223.880953e-219.819357e-202.094080e-183.764170e-175.703098e-167.283131e-157.839547e-147.112618e-13...2.220879e-073.073871e-073.586013e-073.526174e-072.922545e-072.041664e-071.202190e-075.966609e-082.496018e-088.801028e-09
5790.01.122985e-243.999329e-231.200511e-213.037462e-206.477705e-191.164386e-171.764163e-162.252921e-152.425039e-142.200175e-13...6.869938e-089.508530e-081.109276e-071.090766e-079.040428e-086.315564e-083.718784e-081.845676e-087.721035e-092.722458e-09
5850.03.337566e-251.188620e-233.567978e-229.027487e-211.925206e-193.460614e-185.243179e-176.695792e-167.207337e-156.539030e-14...2.041779e-082.825982e-083.296823e-083.241810e-082.686860e-081.877017e-081.105241e-085.485440e-092.294730e-098.091280e-10
5910.09.530465e-263.394122e-241.018841e-222.577811e-215.497452e-209.881830e-191.497197e-171.911992e-162.058065e-151.867229e-14...5.830329e-098.069631e-099.414124e-099.257032e-097.672365e-095.359848e-093.156031e-091.566375e-096.552632e-102.310476e-10
5970.02.614728e-269.311935e-252.795239e-237.072347e-221.508252e-202.711127e-194.107631e-185.245642e-175.646398e-165.122831e-15...1.599578e-092.213941e-092.582809e-092.539711e-092.104950e-091.470500e-098.658720e-104.297423e-101.797746e-106.338901e-11
\n", "

100 rows × 29 columns

\n", "
" ], "text/plain": [ "bincenters 11.048638 13.365842 16.169028 19.560119 \\\n", "30.0 3.052113e-12 3.131145e-11 2.707518e-10 1.973355e-09 \n", "90.0 4.276988e-11 4.387737e-10 3.794100e-09 2.765302e-08 \n", "150.0 4.181474e-10 4.289750e-09 3.709370e-08 2.703547e-07 \n", "210.0 2.852166e-09 2.926021e-08 2.530146e-07 1.844078e-06 \n", "270.0 1.357295e-08 1.392441e-07 1.204051e-06 8.775639e-06 \n", "... ... ... ... ... \n", "5730.0 3.630329e-24 1.292883e-22 3.880953e-21 9.819357e-20 \n", "5790.0 1.122985e-24 3.999329e-23 1.200511e-21 3.037462e-20 \n", "5850.0 3.337566e-25 1.188620e-23 3.567978e-22 9.027487e-21 \n", "5910.0 9.530465e-26 3.394122e-24 1.018841e-22 2.577811e-21 \n", "5970.0 2.614728e-26 9.311935e-25 2.795239e-23 7.072347e-22 \n", "\n", "bincenters 23.662416 28.625078 34.628546 41.891108 \\\n", "30.0 1.212285e-08 6.277254e-08 2.739684e-07 1.007852e-06 \n", "90.0 1.698799e-07 8.796444e-07 3.839175e-06 1.412324e-05 \n", "150.0 1.660862e-06 8.600002e-06 3.753438e-05 1.380784e-04 \n", "210.0 1.132867e-05 5.866026e-05 2.560205e-04 9.418269e-04 \n", "270.0 5.391110e-05 2.791537e-04 1.218356e-03 4.481986e-03 \n", "... ... ... ... ... \n", "5730.0 2.094080e-18 3.764170e-17 5.703098e-16 7.283131e-15 \n", "5790.0 6.477705e-19 1.164386e-17 1.764163e-16 2.252921e-15 \n", "5850.0 1.925206e-19 3.460614e-18 5.243179e-17 6.695792e-16 \n", "5910.0 5.497452e-20 9.881830e-19 1.497197e-17 1.911992e-16 \n", "5970.0 1.508252e-20 2.711127e-19 4.107631e-18 5.245642e-17 \n", "\n", "bincenters 50.676829 61.305159 ... 411.502887 497.806397 \\\n", "30.0 3.125064e-06 8.167451e-06 ... 1.003399e-05 4.000585e-06 \n", "90.0 4.379215e-05 1.144522e-04 ... 1.406084e-04 5.606101e-05 \n", "150.0 4.281419e-04 1.118962e-03 ... 1.374683e-03 5.480906e-04 \n", "210.0 2.920338e-03 7.632395e-03 ... 9.376656e-03 3.738503e-03 \n", "270.0 1.389737e-02 3.632120e-02 ... 4.462183e-02 1.779087e-02 \n", "... ... ... ... ... ... \n", "5730.0 7.839547e-14 7.112618e-13 ... 2.220879e-07 3.073871e-07 \n", "5790.0 2.425039e-14 2.200175e-13 ... 6.869938e-08 9.508530e-08 \n", "5850.0 7.207337e-15 6.539030e-14 ... 2.041779e-08 2.825982e-08 \n", "5910.0 2.058065e-15 1.867229e-14 ... 5.830329e-09 8.069631e-09 \n", "5970.0 5.646398e-16 5.122831e-15 ... 1.599578e-09 2.213941e-09 \n", "\n", "bincenters 602.210134 728.510216 881.298909 1066.131608 \\\n", "30.0 1.344432e-06 3.808201e-07 9.092150e-08 1.829696e-08 \n", "90.0 1.883980e-05 5.336510e-06 1.274101e-06 2.563990e-07 \n", "150.0 1.841907e-04 5.217335e-05 1.245648e-05 2.506731e-06 \n", "210.0 1.256357e-03 3.558723e-04 8.496515e-05 1.709831e-05 \n", "270.0 5.978779e-03 1.693533e-03 4.043340e-04 8.136780e-05 \n", "... ... ... ... ... \n", "5730.0 3.586013e-07 3.526174e-07 2.922545e-07 2.041664e-07 \n", "5790.0 1.109276e-07 1.090766e-07 9.040428e-08 6.315564e-08 \n", "5850.0 3.296823e-08 3.241810e-08 2.686860e-08 1.877017e-08 \n", "5910.0 9.414124e-09 9.257032e-09 7.672365e-09 5.359848e-09 \n", "5970.0 2.582809e-09 2.539711e-09 2.104950e-09 1.470500e-09 \n", "\n", "bincenters 1289.728823 1560.220544 1887.441843 2283.290476 \n", "30.0 3.103537e-09 4.437113e-10 5.346995e-11 5.431060e-12 \n", "90.0 4.349049e-08 6.217817e-09 7.492852e-10 7.610656e-11 \n", "150.0 4.251926e-07 6.078961e-08 7.325522e-09 7.440695e-10 \n", "210.0 2.900221e-06 4.146434e-07 4.996708e-08 5.075267e-09 \n", "270.0 1.380163e-05 1.973214e-06 2.377844e-07 2.415229e-08 \n", "... ... ... ... ... \n", "5730.0 1.202190e-07 5.966609e-08 2.496018e-08 8.801028e-09 \n", "5790.0 3.718784e-08 1.845676e-08 7.721035e-09 2.722458e-09 \n", "5850.0 1.105241e-08 5.485440e-09 2.294730e-09 8.091280e-10 \n", "5910.0 3.156031e-09 1.566375e-09 6.552632e-10 2.310476e-10 \n", "5970.0 8.658720e-10 4.297423e-10 1.797746e-10 6.338901e-11 \n", "\n", "[100 rows x 29 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sd.data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`bins` are the binedges. For an example of how they should be formatted look again to the sizedistribution generated above" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2023-11-28T22:03:51.030003Z", "iopub.status.busy": "2023-11-28T22:03:51.029161Z", "iopub.status.idle": "2023-11-28T22:03:51.042788Z", "shell.execute_reply": "2023-11-28T22:03:51.040983Z", "shell.execute_reply.started": "2023-11-28T22:03:51.029919Z" } }, "outputs": [ { "data": { "text/plain": [ "array([ 10. , 12.09727592, 14.63440848, 17.70364774,\n", " 21.41659115, 25.90824126, 31.34191432, 37.91517855,\n", " 45.86703767, 55.48662105, 67.1236965 , 81.20138776,\n", " 98.23155932, 118.83342776, 143.75607647, 173.90569229,\n", " 210.37851445, 254.50069379, 307.87651158, 372.44671113,\n", " 450.55906317, 545.05373075, 659.36653747, 797.65389392,\n", " 964.9439247 , 1167.31929089, 1412.1383554 , 1708.3027329 ,\n", " 2066.58095226, 2500. ])" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sd.bins" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To see options for the `distType` argument see help file. This is what our generated was:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2023-11-28T22:04:00.741788Z", "iopub.status.busy": "2023-11-28T22:04:00.740908Z", "iopub.status.idle": "2023-11-28T22:04:00.752028Z", "shell.execute_reply": "2023-11-28T22:04:00.750060Z", "shell.execute_reply.started": "2023-11-28T22:04:00.741700Z" } }, "outputs": [ { "data": { "text/plain": [ "'dNdDp'" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sd.distributionType" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { "iopub.execute_input": "2023-11-28T22:04:59.419589Z", "iopub.status.busy": "2023-11-28T22:04:59.419184Z", "iopub.status.idle": "2023-11-28T22:04:59.431688Z", "shell.execute_reply": "2023-11-28T22:04:59.430165Z", "shell.execute_reply.started": "2023-11-28T22:04:59.419545Z" }, "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "array([[ 0., 60.],\n", " [ 60., 120.],\n", " [ 120., 180.],\n", " [ 180., 240.],\n", " [ 240., 300.],\n", " [ 300., 360.],\n", " [ 360., 420.],\n", " [ 420., 480.],\n", " [ 480., 540.],\n", " [ 540., 600.],\n", " [ 600., 660.],\n", " [ 660., 720.],\n", " [ 720., 780.],\n", " [ 780., 840.],\n", " [ 840., 900.],\n", " [ 900., 960.],\n", " [ 960., 1020.],\n", " [1020., 1080.],\n", " [1080., 1140.],\n", " [1140., 1200.],\n", " [1200., 1260.],\n", " [1260., 1320.],\n", " [1320., 1380.],\n", " [1380., 1440.],\n", " [1440., 1500.],\n", " [1500., 1560.],\n", " [1560., 1620.],\n", " [1620., 1680.],\n", " [1680., 1740.],\n", " [1740., 1800.],\n", " [1800., 1860.],\n", " [1860., 1920.],\n", " [1920., 1980.],\n", " [1980., 2040.],\n", " [2040., 2100.],\n", " [2100., 2160.],\n", " [2160., 2220.],\n", " [2220., 2280.],\n", " [2280., 2340.],\n", " [2340., 2400.],\n", " [2400., 2460.],\n", " [2460., 2520.],\n", " [2520., 2580.],\n", " [2580., 2640.],\n", " [2640., 2700.],\n", " [2700., 2760.],\n", " [2760., 2820.],\n", " [2820., 2880.],\n", " [2880., 2940.],\n", " [2940., 3000.],\n", " [3000., 3060.],\n", " [3060., 3120.],\n", " [3120., 3180.],\n", " [3180., 3240.],\n", " [3240., 3300.],\n", " [3300., 3360.],\n", " [3360., 3420.],\n", " [3420., 3480.],\n", " [3480., 3540.],\n", " [3540., 3600.],\n", " [3600., 3660.],\n", " [3660., 3720.],\n", " [3720., 3780.],\n", " [3780., 3840.],\n", " [3840., 3900.],\n", " [3900., 3960.],\n", " [3960., 4020.],\n", " [4020., 4080.],\n", " [4080., 4140.],\n", " [4140., 4200.],\n", " [4200., 4260.],\n", " [4260., 4320.],\n", " [4320., 4380.],\n", " [4380., 4440.],\n", " [4440., 4500.],\n", " [4500., 4560.],\n", " [4560., 4620.],\n", " [4620., 4680.],\n", " [4680., 4740.],\n", " [4740., 4800.],\n", " [4800., 4860.],\n", " [4860., 4920.],\n", " [4920., 4980.],\n", " [4980., 5040.],\n", " [5040., 5100.],\n", " [5100., 5160.],\n", " [5160., 5220.],\n", " [5220., 5280.],\n", " [5280., 5340.],\n", " [5340., 5400.],\n", " [5400., 5460.],\n", " [5460., 5520.],\n", " [5520., 5580.],\n", " [5580., 5640.],\n", " [5640., 5700.],\n", " [5700., 5760.],\n", " [5760., 5820.],\n", " [5820., 5880.],\n", " [5880., 5940.],\n", " [5940., 6000.]])" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sd.layerbounderies" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "create the instance" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { "iopub.execute_input": "2023-11-28T22:05:26.938603Z", "iopub.status.busy": "2023-11-28T22:05:26.937578Z", "iopub.status.idle": "2023-11-28T22:05:26.947235Z", "shell.execute_reply": "2023-11-28T22:05:26.945103Z", "shell.execute_reply.started": "2023-11-28T22:05:26.938510Z" } }, "outputs": [], "source": [ "sdc = atmsd.SizeDist_LS(sd.data, sd.bins, sd.distributionType, sd.layerbounderies)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Methods" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plotting" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "execution": { "iopub.execute_input": "2023-11-28T22:05:29.062637Z", "iopub.status.busy": "2023-11-28T22:05:29.061732Z", "iopub.status.idle": "2023-11-28T22:05:29.739788Z", "shell.execute_reply": "2023-11-28T22:05:29.738262Z", "shell.execute_reply.started": "2023-11-28T22:05:29.062578Z" } }, "outputs": [ { "data": { "text/plain": [ "(
,\n", " ,\n", " ,\n", " )" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGwAAANjCAYAAAD/AYwHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAB7CAAAewgFu0HU+AACh/klEQVR4nOzdeXxU1f3/8fdNQkgIS0BC2IUia1kFIsimtioCylYobiA/ZFFcUASL2orVqiCKSkUIoIBFXFkUrPoVgYCCLAIBJEBQCgn7KiQkYTL390fMmJBkEmDmzCV5PR+P297MvXPOZ8Yhj+STz+ccy7ZtWwAAAAAAAHCMoEAHAAAAAAAAgNxI2AAAAAAAADgMCRsAAAAAAACHIWEDAAAAAADgMCRsAAAAAAAAHIaEDQAAAAAAgMOQsAEAAAAAAHAYEjYAAAAAAAAOQ8IGAAAAAADAYUjYAAAAAAAAOAwJGwAAAAAAAIchYQMAAAAAAOAwJGwAAAAAAAAchoQNAAAAAACAw5CwAQAAAAAAcBgSNgAAAAAAAA4TEugAUHykpaVp69atkqSoqCiFhPDxAgAAAHB5XC6Xjh49Kklq1qyZwsLCAhzRxXO5XDp06FCgwyhQ1apV+f3NgfgvAp/ZunWrYmJiAh0GAAAAgGJq3bp1atu2baDDuGiHDh1SrVq1Ah1Ggfbv36+aNWsGOgxcgJYoAAAAAAAAh6HCBj4TFRX1+xdBHSTryitVBAAAAOAwdprk/k7SBb9zXKE+XrdOUdWqBToMHT14UP3okHA0EjbwmVw9j1aYZIUHLhgAAAAAxU5xWGclqlo1VaX9CEVw5X/aAQAAAAC4Uth21hFoTogBXrGGDQAAAAAAgMOQsAEAAAAAAHAYWqIAAAAAADDEsrOOQHNCDPCOChsAAAAAAACHIWEDAAAAAADgMLREAQAAAABgitvOOgLNCTHAKypsAAAAAAAAHIaEDQAAAAAAgMPQEgUAAAAAgCHsEoWiosIGAAAAAADAYUjYAAAAAAAAOAwtUQAAAAAAmGLbWUegOSEGeEWFDQAAAAAAgMOQsAEAAAAAAHAYWqIAAAAAADDFIbtEyQkxwCsqbAAAAAAAAByGhA0AAAAAAIDD0BIFAAAAAIAp7BKFIqLCBgAAAAAAwGGosAEAAAAAwBDLlix3oKNwyMLH8IoKGwAAAAAAAIchYQMAAAAAAOAwtEQBAAAAAGAKiw6jiKiwAQAAAAAAcBgSNgAAAAAAAA5DSxQAAAAAAIZYtjN2aHJCDPCOChsAAAAAAACHIWEDAAAAAADgMLREAQAAAABgCrtEoYiosAEAAAAAAHAYEjYAAAAAAAAOQ0sUAAAAAACm2L8dgeaEGOAVFTYAAAAAAAAOQ8IGAAAAAADAYWiJAgAAAADAEMu2ZTlghyYnxADvqLABAAAAAABwGBI2AAAAAAAADkNLFAAAAAAAprh/OwLNCTHAKypsAAAAAAAAHIaEDQAAAAAAgMPQEgUAAAAAgCHsEoWiosIGAAAAAADAYUjYAAAAAAAAOAwtUQAAAAAAmEQ3EoqAChsAAAAAAACHocIGAAAAAABDWHQYRUWFDQAAAAAAgMOQsAEAAAAAAHAYWqIAAAAAADDFljMWHXZCDPCKChsAAAAAAACHIWEDAAAAAADgMLREAQAAAABgiOWWLHfg+5Esd6AjQGGosAEAAAAAAHAYEjYAAAAAAAAOQ0sUAAAAAACmsEsUiogKGwAAAAAAAIchYQMAAAAAAOAwtEQBAAAAAGCIZduy7MD3IzkhBnhHhQ0AAAAAAIDDkLABAAAAAABwGFqiAAAAAAAwhV2iUERU2AAAAAAAADgMCRsAAAAAAACHoSUKAAAAAABTbDvrCDQnxACvqLABAAAAAABwGBI2AAAAAAAADkNLFAAAAAAAhli2ZLkDHUVWHHA2KmwAAAAAAAAchoQNAAAAAACAw9ASBQAAAACAKewShSKiwgYAAAAAAMBhqLABAAAAAMAU2yEL/johBnhFhQ0AAAAAAIDDkLABAAAAAABwGFqiAAAAAAAwhUWHUURU2AAAAAAAADgMCRsAAAAAAACHoSUKAAAAAABDLIfsEuWEGOAdFTYAAAAAAAAOQ8IGAAAAAADAYWiJAgAAAADAFLeddQSaE2KAV1TYAAAAAAAAOAwJGwAAAAAAAIehJQoAAAAAAEPYJQpFRYUNAAAAAACAw5CwAQAAAAAAcBhaogAAAAAAMMaWbCf0IzkhBnhDhQ0AAAAAAIDDkLABAAAAAABwGFqiAAAAAAAwhF2iUFRU2AAAAAAAADgMCRsAAAAAAACHoSUKAAAAAABTbIfsEuWEGOAVFTYAAAAAAAAOQ8IGAAAAAADAYWiJAgAAAADAFPdvR6A5IQZ4RYUNAAAAAACAw1BhAwAAAACAIZZty3LAgr9OiAHeUWEDAAAAAADgMCRsAAAAAAAAHIaWKAAAAAAATLF/OwLNCTHAKypsAAAAAAAAHIaEDQAAAAAAgMPQEgUAAAAAgCGW7YwdmqzAh4BCUGEDAAAAAADgMCRsAAAAAAAAHIaEDQAAAAAAptgOOvzMsqwiHTfccIP/g7kCkbABAAAAAABwmBKbsPFlpu/LL79Unz59VLNmTZUuXVo1a9ZUnz599OWXXxY5ntTUVL3yyiuKiYlRpUqVVLZsWTVu3FhPPPGE9u3bV+Rxtm/frhEjRuiaa65ReHi4oqKi1LlzZ02fPl0ul6vI4wAAAAAA4AsPPPCAtm7dWuDx7rvvBjpER2KXqMtg27ZGjBih2NjYXI8nJydr4cKFWrhwoYYNG6Zp06bJsqwCx9mzZ4+6d++unTt35no8ISFBCQkJmjlzpt5//31169bNazyzZs3SyJEjlZ6e7nksLS1Nq1at0qpVqzR79mwtWbJEV1111SW8WgAAAADA5bJkO2OXKBM9Ub+pUqWKmjZtamy+4qLEJ2weeOABPfjggwVej4iIKPDaM88840nWtGrVSmPHjlW9evW0Z88eTZw4UZs2bVJsbKyioqL0wgsv5DvG2bNn1aNHD0+yZujQoRowYIDCw8O1fPlyvfTSSzp9+rT69eunNWvWqHnz5vmO89VXX2nYsGFyu92Kjo7W008/reuuu04nTpzQjBkztGDBAq1du1Z9+vTR8uXLFRRUYourAAAAAABwvBKfsLnUTF9iYqImTpwoSWrTpo3i4uIUHh4uSWrbtq3uuOMOdenSRRs2bNCECRM0ePBg1atXL884kyZNUkJCgiRp4sSJGjNmjOda+/btdeONN6pz585KTU3VqFGj9O233+YZw+Vy6aGHHpLb7Vb58uX13Xff5Zqra9euGjlypKZOnaq4uDj95z//0cCBAy/6NQMAAAAAADMos7hEkydP9qwJM2XKFE+yJluZMmU0ZcoUSVkJlddffz3PGOfPn9cbb7whSWrcuLFGjx6d55727dtryJAhkqTly5dr48aNee5ZuHChEhMTJUnjxo3LNzH0yiuvqGLFip5zAAAAAEAAuB10wNFI2FwC27a1ePFiSVKjRo3Url27fO9r166dGjZsKElatGiR7Av6FFesWKFTp05JkgYNGlRgm9J9993nOV+wYEGe64sWLcr33pzKlCmj/v37S5K2bdum3bt353sfAAAAAAC+9PHHH6thw4YKDw9XuXLlVL9+fQ0aNEjLly8PdGiORsLmEvzyyy9KTk6WJHXp0sXrvdnXk5KStHfv3lzXVq1alee+/LRp08azls7q1avzXM8ep2HDhqpatWqhsRQ0DgAAAACg5Dl48KCSkpK8Hpfjp59+0q5du5SWlqazZ88qMTFRc+fO1U033aTevXvr9OnTPnolxUuJX8Pm448/1vz587Vv3z6FhISoatWquv7663XffffpxhtvzPc5O3bs8Jw3atTI6/g5r+/YsUN169a96HFCQkJUr149xcfH53qOlLVocfY/nouN5WIV9o/04MGDFz0mAAAAAJQklu2QXaJyxBATE1Po/Rd2jBRFmTJldMcdd+hPf/qTGjVqpLJly+ro0aNauXKlpk2bpuPHj2vRokXq2bOn/u///k+lSpW66DmKsxKfsPnpp59yfZ2YmOjJ9vXq1UuzZ89WhQoVct2zf/9+z3nNmjW9jl+rVq18n5fz64iICEVGRhY6Tnx8vI4ePar09HSVLl1aUlYSJfsfzuXEUhQ5nw8AAAAAgDfJycn5/q5788036+GHH9Ztt92mTZs2aeXKlXr77bf1yCOPmA/SwUpswuZyMn1nzpzxnJctW9brPDm3BT979myua9njFDZGfuNkJ2x8FQsAAAAAoGRat26dqlWr5vNxvRUmREdH65NPPlHjxo2VkZGhKVOmkLC5QIlN2FxOpi8tLc1zHhoa6nWe7MSKJJ07dy7XtexxChvD2zi+iqUoCqvKOXjwYJFK6QAAAACgxLJ/OwItRwzVqlUrtGPDH/7whz/o5ptv1tKlS5WYmKgDBw6oevXqxuNwqhK76HBRMn3ZCZDs7bmzhYWFec4zMjK8zpOenu45v3Dr7+xxChvD2zi+iqUoatas6fXwR0YWAAAAAFB8NWnSxHOevbkPspTYCpvCeMv0lStXznNfYa1FKSkpnvMLW5ayxylKe1JB4/gqFgAAgKKygpzwp2E4me22Ah0CgCvEpSxmXFKU2Aqboigo05ezVKywnZNythFduGhv9jgpKSk6depUkcaJiorK1drkq1gAAAAAAP6XvUuUEw4nyLkREO1QuZGw8aKgTF/ORE5CQoLXMXJeb9y48SWN43K5tGfPnnzHKFu2rCf5cjmxAAAAAABg0s8//6z/+7//k5TV5VKjRo0AR+QsJGy8KCjTV7duXc/XK1eu9DpGXFycJKlGjRqqU6dOrmsdO3b0nHsbZ8OGDZ52pg4dOuS5nj3Ozp07dejQoQLHyTlHfuMAAAAAAPzMdtDhR59//rlcLleB1w8fPqy//OUvOn/+vCRp5MiR/g3oCkTCpgDeMn2WZalnz56SsqpW1q5dm+8Ya9eu9VS19OzZU5aVu5f3hhtuUIUKFSRJc+bMKbCiZ/bs2Z7z3r1757neq1evfO/NKTU1VR999JGkrMqeBg0a5HsfAAAAAACX6+GHH9bVV1+tRx55RPPnz9eaNWu0efNmffPNN3rmmWf0xz/+UZs2bZKUVYRAwiavEpmw8UWmb9SoUQoJyVqz+eGHH86zTfa5c+f08MMPS5JCQkI0atSoPGOEhoZ6tgvfsWOHJk2alOeeNWvWaNasWZKkLl26qG3btnnu6d27t+rVqydJeumllzztUzmNGTNGJ0+e9JwDAAAAAOBPBw4c0JQpU3TXXXfp+uuvV6tWrXTzzTfrX//6l44fPy5J6tu3rz7//PNca7Uii2WXwCWZ69Spo/Pnz6tv375q37696tSpo/DwcB07dkwrVqzQtGnTPB+ejh076ptvvsn3wzNu3Di9/PLLkqRWrVrpySefVL169bRnzx5NmDDBky0cN26cXnzxxXxjOXPmjNq0aaNdu3ZJkoYNG6YBAwYoPDxcy5cv14svvqizZ88qPDxc33//vVq2bJnvOF988YVuv/12ud1uRUdH65lnnlFMTIxOnjypGTNm6NNPP/W8nhUrVig4OPiy3sP8JCUl/b6YcfCfJOvitw4HAADOxy5RKAy7RMGn7HNS5jJJWRup5Nx45UqR83el+M9+VPXowC+ue+DwATW/41pJ/nlfV65cqZUrV2rNmjX6+eefdezYMf3666+edVivv/56DRo0SO3bt/fpvMVJiU3Y/O9//yv0vr59+2rmzJmKjIzM97rb7dbQoUP1zjvvFDjGkCFDFBsbq6CggouZEhMT1a1bN+3evTvf6+XLl9e8efPUo0cPr/HOmDFDDz30kDIyMvK9HhMTo6VLl6py5cpex7lUJGwAAAic4ppEMf66gtxm5zPFbbawvjgnbIrza3MsEjZ+4e+EDS5fSKADCIQ5c+b4JNMXFBSkWbNmqW/fvoqNjdX69et17NgxVa5cWW3bttXw4cN12223FRrPNddco02bNumtt97Sxx9/rMTERGVkZKhWrVrq1q2bHn30UV199dWFjjN06FC1b99eb775ppYtW6YDBw4oIiJCjRs31t13363777/f08YFAAAAAACcq0RW2MA/qLABACBwqLDxESpsfKI4V6EU59fmWMWwwqZGlcBX2CQfocLG6UrkosMAAAAAAABORsIGAAAAAADAYVjQBAAAAAAAU2w76wg0J8QAr6iwAQAAAAAAcBgqbAAAAPzA9GK5RuczuDBvsX4fDbLdhl+XwYV5bVewsbkAwCQSNgAAAAAAGGLZWUegOSEGeEdLFAAAAAAAgMOQsAEAAAAAAHAYWqIAAAAAADCFXaJQRFTYAAAAAAAAOAwJGwAAAAAAAIehJQoAAAAAAEMsd9YRaE6IAd6RsAEAACgOgsz95B0UYnCuUJexuSTJCiqeazq4XcFG57Nd5gr5jf/OafC9tN2WsbkAOA8tUQAAAAAAAA5DhQ0AAAAAAKawSxSKiAobAAAAAAAAh6HCBgAAAAAAQyw76wg0J8QA76iwAQAAAAAAcBgSNgAAAAAAAA5DSxQAACgxTG7ZbIVkGptLMrvVdnDYeYNzmd3WO8jwfzdTMjPM/tifmWZyPrOvze0unn/zZgtxg1h0GEVUPL/bAAAAAAAAXMFI2AAAAAAAADgMLVEAAAAAABhiyRk7NNEE53xU2AAAAAAAADgMCRsAAAAAAACHoSUKAAAAAABT3JLcDuiJMre5IC4RFTYAAAAAAAAOQ4UNAAAoMawgc3/RNDmXJAWHnTc2V6my6cbmCi6TYWwuSQoube59NCnzXKjR+c4HhRmby2Vspiy229xSrXYGv64BJRnfAQAAAAAAMMX+7Qg0J8QAr2iJAgAAAAAAcBgSNgAAAAAAAA5DSxQAAAAAAIZYti3LDnw/khNigHdU2AAAAAAAADgMCRsAAAAAAACHoSUKAAAElNHtr4Pc5qYKzTQ2lyQFh5nb3LhUuTRjc5WulGJsLkkKMbhluQxuD33+bGljc0mSFWLu35rtjjA2lyTZrmCDc5n7/mhyu/ISj12iUERU2AAAAAAAADgMCRsAAAAAAACHoSUKAAAAAABD2CUKRUWFDQAAAAAAgMOQsAEAAAAAAHAYWqIAAAAAADDF/dsRaE6IAV5RYQMAAAAAAOAwVNgAAIASwwoyt8BicKjL2FySVKr8OWNzhVU5Y2yuMtVPGZtLkkLLpxmby3ZbxuZKPxFhbC7T3Blmf6XJTDM4X1CwsamsIHOfR8ns599pLDlk0WEFPgZ4R4UNAAAAAACAw5CwAQAAAAAAcBhaogAAAAAAMMX+7Qg0J8QAr6iwAQAAAAAAcBgSNgAAAAAAAA5DSxQAAAAAAIZYtkN2iXJADPCOhA0AAAgok1ttB4W4jc0VHHbe2FySVLqCuW29TW61XaHeUWNzSVK9shWNzZXhzjQ2195KR4zNJZndstmVGmpsLkk6f7a0sblMblme6TK3hTiAoqElCgAAAAAAwGGosAEAAAAAwBR2iUIRUWEDAAAAAADgMCRsAAAAAAAAHIaWKAAAAAAAjHH/dgSaE2KAN1TYAAAAAAAAOAwJGwAAAAAAAIehJQoAAARWkLmSbCsk09hcIWUyjM0lSaGVUozNVa7OcWNz3Rr9B2NzSVKzClWMzZXhNvd53BB+0NhckrQi7ZixudJPRBibS5LST5qbz5UaamwuK8jslkG22zI6n6NY7qwj0JwQA7yiwgYAAAAAAMBhSNgAAAAAAAA4DC1RAAAAAAAYY8tyxA5NZtvgcPGosAEAAAAAAHAYEjYAAAAAAAAOQ0sUAAAAAADGuH87As0JMcAbEjYAACAX01u7mhQUYu6H05CIdGNzSVJ4lTPG5oqpHG1srt41GhqbS5LaVqxpbC637TI2V5XSZYzNJUn7z/1qbK6UymeNzSVJ5w6XNzbX+V/DjM2VGWT6l3eaPYDC8K8EAAAAAADAYaiwAQAAAADAGFqiUDRU2AAAAAAAADgMFTYAAAAAAJhiubOOQHNCDPCKChsAAAAAAACHIWEDAAAAAADgMLREAQAAAABgjC1nLPhrBzoAFIKEDQAACCgryNwPjEGhmcbmKlU23dhckhRe9bSxuTpVvtbYXG3KNzU2lySdP9fM3GRWhrGpbosONTaXJG399aixuXZV3m9sLkkKCTf3380KccIv9QAChZYoAAAAAAAAh6HCBgAAAAAAY9xyRkuUE2KAN1TYAAAAAAAAOAwJGwAAAAAAAIehJQoAAAAAAFMsd9YRaE6IAV5RYQMAAAAAAOAwVNgAAICAMrqtd4i5bb1Dypjb+leSakeGG5urU+VaxuY6n97a2FyS5Epra2wuy+C23pZcxuaSpOsq7TE214dRPxmbSzL7bzvI4LbeJr8XAygaEjYAAAAAABhiyS3LATs0OSEGeEdLFAAAAAAAgMOQsAEAAAAAAHAYWqIAAAAAADDG/dsRaE6IAd5QYQMAAAAAAOAwJGwAAAAAAAAchpYoAAAAAACMseWMdiS2cnc6EjYAACAXK8jsD3Am5wsKzTQ2V0jZdGNzSVKdMhWMzVU7rLaxudJONzM2lySdrWPufQw6b+4XtrKH/2hsLklqE/mdsblqlSlvbC5JOlImw9hcQSHmvmeZ/t4PoHC0RAEAAAAAADgMFTYAAAAAABjjliwntEQ5IQZ4Q4UNAAAAAACAw5CwAQAAAAAAcBhaogAAAAAAMMYtZ7QjOSEGeEOFDQAAAAAAgMNQYQMAAALL4FaylsEtcoPDzhubS5Kqh19lbC63q5qxudIrVDQ2lySlVoswNpfJbb3DDpvbil2SIoKqGJsrurS5/2aSFBRq7vuIye+PMIkKm0A7duyYkpOTdfToUR0/flzh4eGKiopSVFSU/vCHPygoyBm1LSRsAAAAAABAsXXmzBktXrxYK1as0KpVq5SYmFjgvREREWrXrp06deqk7t2769prrzUYaW4kbAAAAAAAQLGzceNGvfHGG/r000+VlpYmSbJt75VrZ8+e1bJly7Rs2TKNHz9eDRs21MiRI3XfffcpIsJsRR8JGwAAAAAADLEsW5YV+HYkyyq+LXcbN27UM888o6+//lrS70maatWqqW3btmrdurWqVKmiSpUqqWLFijp37pxOnDihkydPateuXVq/fr3i4+N1/vx5JSQk6JFHHtH48eM1ZswYPfrooypdurSR10HCBgAAAAAAFAuDBw/We++9J7c7Kyl27bXX6u6771bfvn1Vu3bR1/PKyMhQXFyc3n//fS1cuFDHjx/XuHHj9Pbbb+u9995Tx44d/fUSPJyxkg4AAAAAAMBlmjNnjkJCQjR06FAlJCRow4YNeuyxxy4qWSNJoaGh+vOf/6x33nlHhw4d0ty5c9WwYUP973//07fffuun6HMjYQMAAAAAgDFuBx2BMXbsWFmW5TlWrFjhs7EfeOABJSYmavr06WrQoIFPxixdurTuuecebd++XR988IHq16/vk3ELQ0sUAAAAAAAwYsuWLZo8ebLfxn/rrbf8NrZlWerfv7/fxr8QCZsLjB07Vq+88orn6+XLl+uGG27w+pwvv/xSsbGxWrdunY4ePaqoqCjFxMRo2LBh6tq1a5HmTU1N1VtvvaWPP/5YiYmJysjIUK1atdS9e3c98sgjRS7f2r59u6ZMmaJvvvlGycnJKlu2rBo3bqy7775bQ4YMUUgI/8kBACWXFWRugcWgELN/uYwsFWZsLtsdaWyu8+VLGZtLkjIqhBqbK8hl7jPiKmv2fbTd5YzNVTbE3H8zSQoKPW9sLpPfs0zOhZLL7XZr6NChcrlcqlKlio4cORLokByNlqgcLjbTZ9u2hg8frttuu00LFy5UcnKyMjIylJycrIULF+q2227T8OHDC902bM+ePbr22ms1duxYrV+/XidPnlRKSooSEhL06quvqnnz5vriiy8KjWfWrFlq3bq1pk+frj179igtLU3Hjh3TqlWrNGLECHXq1EnHjx8v8usDAAAAAPhaoNugAtcS9eabb2r9+vVq1KiRhgwZYnz+Kw0Jm99cmOkrimeeeUaxsbGSpFatWmn+/Plat26d5s+fr1atWkmSYmNj9fe//73AMc6ePasePXpo586dkqShQ4dq2bJl+v777/Wvf/1LZcuW1enTp9WvXz/Fx8cXOM5XX32lYcOGKT09XdHR0XrzzTf1ww8/6L///a/69OkjSVq7dq369OnjWS0bAAAAAAAT9u/f7/nd+O2331ZoqNnquCsRCZvfXGymLzExURMnTpQktWnTRt99950GDBigtm3basCAAVq9erXatGkjSZowYYL27NmT7ziTJk1SQkKCJGnixImKjY3VTTfdpPbt2+upp57S119/rZCQEKWmpmrUqFH5juFyufTQQw/J7XarfPny+u677/Twww8rJiZGXbt21aeffqoHH3xQkhQXF6f//Oc/F/v2AAAAAABwyR588EGdPXtWgwYNKnTZkUu1Y8cOff7557l+/3a73Zo+fbruvPNO3XvvvZo/f75f5vYHEja6tEzf5MmT5XK5JElTpkxReHh4rutlypTRlClTJGUlVF5//fU8Y5w/f15vvPGGJKlx48YaPXp0nnvat2/vSSAtX75cGzduzHPPwoULlZiYKEkaN26c6tWrl+eeV155RRUrVvScAwAAAAACIdBtUOZboj766CMtWbJElSpV8tvvoyNGjFDTpk3Vq1cvNWzYUM8//7wkqV+/fnrggQf04Ycfat68ebrnnnv017/+1S8x+BoJG118ps+2bS1evFiS1KhRI7Vr1y7f+9q1a6eGDRtKkhYtWpRnLZsVK1bo1KlTkqRBgwYpKCj//xz33Xef53zBggV5ri9atCjfe3MqU6aMZzXrbdu2affu3fneBwAAAACAr5w6dUqPPvqopKzuk6ioKJ/PsWDBAsXGxqpx48YaNWqUmjZtqvHjx+u1117T0qVLNXHiRG3evFlLly5V8+bN9cknn+ijjz7yeRy+VuK3DLqUTN8vv/yi5ORkSVKXLl283tulSxft3LlTSUlJ2rt3r+rWreu5tmrVqlz3FaRNmzaKiIhQSkqKVq9ened69jgNGzZU1apVvcYyffp0SdLq1auN7R0PAAAAAHCugwcPFnpPzZo1L2nssWPH6tChQ7r++uv9ttDwW2+9pejoaP3www+KiIhQWlqaGjZsqKeeekr//Oc/9cQTT0iSmjdvruuuu0516tTRnDlzjG7RfSlKdMLmUjN9O3bs8Jw3atTI6705r+/YsSNXwqao44SEhKhevXqKj4/P9Rwpa9HipKSkS4oFAAD4j+ktcoMtc4XTtm3uR0h3sNmCcDvE5PtobCq5Qyxzk0my0819RkIMfvYBn7DcWUeg5YghJiam0NsL2/04P6tXr9bMmTMVEhKiadOmybL8871o586duv322xURESFJCgsLU7du3RQbG6sBAwbkurdSpUrq3r27VqxY4ZdYfKlEJ2wuNdO3f/9+z3lhWcZatWrl+7ycX0dERCgyMrLQceLj43X06FGlp6erdOnSkqSkpCTPP5zLiaUoshNDBSlKVhYAAAAAUPxlZGRo2LBhsm1bjz32mJo1a+a3uY4dO5Znt+fsr3P+Hpzt6quv1okTJ/wWj6+U2ITN5WT6zpw54zkvW7as13uzM3xSVjVMfuMUNkZ+42QnbHwVS1Hk90EHAAAAAFzZ1q1bp2rVqvl0zBdffFE7duxQ7dq19eyzz/p07AtVrFgxTwLGsizZtp3v7/opKSkqU6aMX2PyhRKZsLncTF9aWprnvLAdpbITK5J07ty5fMcpyq5UBY3jq1gAAAAAACbYMrlDU8F+b3GqVq3aJa9Rk5+EhAS99NJLkrJ2Vc5ZPOAPdevW9eycnO2xxx7T4MGD873/f//7n6pXr+7XmHyhRCZsLjfTFxYW5jnPyMjwem96errn/MKtv7PHKWwMb+P4KpaiKKyN6uDBg0XqfQQAAAAAFF+TJ09WRkaG/vCHPyg1NVUffPBBnnu2bdvmOf/222916NAhScq1Fk1RtWnTRrNnz5bb7fbsvlyhQgVVqFAhz72//vqrli9f7vgFh6USmLDxRaavXLlynvPCWotSUlI85xe2LGWPU5T2pILG8VUsReHLjCsAAAAAoHjKLhb4+eefdeeddxZ6//PPP+85/+WXXy769/Tnn39ejz76aJGWOvnll190//33q1+/fhc1RyCUuISNLzJ9ORMXhS3Em7Mq5cI1YGrWrKkffvhBKSkpOnXqlNeFh7PHiYqKytXa5KtYAAAAAAAmuOWMlignxOAbBVXT5KdFixaaPHmynyPyjRKXsPFFpq9JkyaexxISErw+P+f1xo0b57rWpEkTffrpp5772rVrl+8YLpdLe/bsyXeMsmXLqlatWtq/f/9lxQIAQElgu81tbWxyLknKcGcam8sKSiv8Jh8JTjf3ukzPF3Te3C9LwRlmfzGzLHOfkXSDn31JkuF/28CVaPbs2Zo9e7bXe8aPH6/nnntOkrR8+XLdcMMN/g/sChMU6ACuRHXr1vUsULRy5Uqv98bFxUmSatSooTp16uS61rFjR8+5t3E2bNjgaWfq0KFDnuvZ4+zcudNTDZSfnHPkNw4AAAAAAMVJXFycdu3aFegwLkmJS9jMnj1btm17PXIuRLx8+XLP49kJF8uy1LNnT0lZVStr167Nd661a9d6qlp69uyZp5/uhhtu8JRtzZkzR7Zt5xkjO+ZsvXv3znO9V69e+d6bU2pqqj766CNJWZU9DRo0yPc+AAAAAID/WJbbMUdJcMMNN2jChAmBDuOSlLiEja+MGjVKISFZHWUPP/xwnm2yz507p4cffliSFBISolGjRuUZIzQ0VI888ogkaceOHZo0aVKee9asWaNZs2ZJkrp06aK2bdvmuad3796qV6+eJOmll17ytE/lNGbMGJ08edJzDgAAAABASVBQcYTTkbC5RA0aNNATTzwhKatlqUOHDvrwww+1YcMGffjhh+rQoYM2bNggKStBUr9+/XzHGTNmjKfaZezYsRo+fLiWL1+utWvX6qWXXtItt9wil8ul8PBwvf766/mOUapUKb355psKCgrSr7/+qg4dOujf//631q1bp6+++kp/+ctfNHXqVElZ7VP33nuvj98NAAAAAEDRuB10wMlK3KLDvvSvf/1LR44c0TvvvKNNmzZpwIABee4ZMmSIXnjhhQLHKFeunJYuXapu3bpp9+7dio2NVWxsbK57ypcvr3nz5qlly5YFjtOtWzdNmzZNDz30kA4fPuyp7skpJiZGCxcuVHBwcNFfJAAAAAAAPjZ+/HiNHz8+0GE4GhU2lyEoKEizZs3S0qVL1bNnT1WvXl2hoaGqXr26evbsqS+++EIzZ85UUJD3t/maa67Rpk2bNGHCBLVp00aRkZEqU6aMGjZsqMcee0zx8fHq0aNHofEMHTpUGzdu1NChQ/WHP/xBYWFhuuqqq9SxY0e9/fbb+u6771S5cmVfvXwAAAAAAOAnVNjk42Izfd26dVO3bt0ua86IiAiNHTtWY8eOvaxxmjZtmqdCBwAAAADgFLac0Y50Za7rUpKQsAEAACWH2yr8Hl9NlWG2BflwWoqxuaygY8bmCj2ZbmwuSSp9PM3YXEHnzf3CVupXc69LkqyKJ43Ndeq82deWmRFubC7b4Pcsk3MBKBpaogAAAAAAAByGChsAAAAAAIyx5Yx2JCfEAG+osAEAAAAAAHAYEjYAAAAAAAAOQ0sUAAAAAACmWO6sI9CcEIMBlSpVUrly5QIdxiUhYQMAAAAAAIqlY8fM7WzoayRsAABALsa3djW51bbL3FbbrtRQY3NJ0oG0M8bmCi6139hcoalJxuaSpIj9pYzNZWWa++t2cGiCsbkk6UDaEYNznTU2lyRlppn7S73tYgULoCQjYQMAAAAAgDHu345Ac0IM8IaULQAAAAAAgMNQYQMAAAAAAEoEl8ulpUuXatWqVfr555915swZZWZmen2OZVlatmyZoQh/R8IGAAAAAABDLLllOaAdyQkxmLZixQoNHjxY+/bt8zxm23aB91uWJdu2ZVmG1/f7DQkbAAAAAABQrG3evFm33XabMjIyZNu2wsLCVL9+fUVGRiooyJmrxZCwAQAAAAAAxdr48eOVnp6u0qVL67XXXtPgwYMVFhYW6LC8ImEDAAAAAIApljvrCDQnxGDQ6tWrZVmWnn76aT3wwAOBDqdISNgAAICAst3m+sJtl7mSZ1dqqLG5JGnP2aPG5vrxVLKxuZqHbTE2lySVOWHwx2MrzdhUIWFbjc0lSRuOHTQ21+FfM4zNJUmZaaWMzeV2BRuby+T3YiAQ0tKyvud27do1wJEUnTMbtQAAAAAAAHykTp06kqTz588HNpCLQMIGAAAAAABjbEluBxwF745UHPXq1UuSFBcXF9hALgIJGwAAAAAAUKw9+uijqlatmiZNmqS9e/cGOpwiIWEDAAAAAACKtaioKH3xxRcKDw/Xddddp5kzZ+r06dOBDssrFh0GAAAAAMCY7JakQHNCDGY1b95ccXFxuu666zR8+HCNGDFClStXVpkyZbw+z7Is7dmzx1CUvyNhAwAAAAAAir1PP/1UQ4YM0ZkzZ2Tbtmzb1pEjRwp9nmUFZhc1EjYAACCgTG4lm5lh7kef82dLG5tLko4dN9fpvurYfmNzXXvNemNzSZKCUo1NZcncdtSnFW9sLkn6/ri5rd/TjpU1Npdk9t+27TL375ptvU2iwiYQ1qxZowEDBigzM1OSdPXVV6t58+aKjIxUUJAzV4shYQMAAAAAAIq1F154QZmZmapQoYLef/993XbbbYEOqVDOTCMBAAAAAAD4yMaNG2VZlp577rkrIlkjUWEDAAAAAIA5ljvrCDQnxGBQSkqKJKljx44BjqToqLABAAAAAADFWt26dSVJqanm1iq7XCRsAAAAAABAsdanTx/Ztq2vvvoq0KEUGQkbAAAAAAAMsWTLktsBhx3ot8Ko0aNHq379+nr99de1YcOGQIdTJCRsAAAAAABAsVauXDktW7ZMTZs2VefOnfX0008rPj5eaWlpgQ6tQCw6DAAAAsp2W+bmcpn7W5XrbJixuSQp7Ug5Y3PFHdtvbK5a4eWNzSVJ11X61dhc6e5MY3MtP/o/Y3NJ0g8nDhibK/1YlLG5JCnzXKixudwGv2fJzd/yUbwFBwd7zm3b1ssvv6yXX365SM+1LEsul8tfoRWIhA0AAAAAAMa4fzsCzQkxmGPbttevnYiEDQAAAAAAKNaeffbZQIdw0YwmbJKSkrRq1Sp9//33SkpK0tGjR3X8+HGFh4crKipKUVFRatasmTp16qS2bduqVKlSJsMDAAAAAADFEAmbfCQmJurdd9/Vhx9+qF9++SXP9ewyJMvK6l+fP3++JKl06dL685//rHvvvVe9e/dWSAjFQAAAAACAK5zlzjoCzQkxwCu/ZUF++OEHvfDCC/rvf/8r27Zz9YeVKlVKlSpVUqVKlVSxYkWdO3dOJ06c0MmTJ/Xrr1kLvaWlpWnp0qVaunSpoqOj9eijj+qhhx5SRESEv0IGAAAAAABwBJ8nbBITEzV69GgtWbLEk6S56qqrdPvtt6tdu3aKiYlRs2bNcq3QnNPRo0e1bt06rVu3TsuWLdOaNWt06NAhPfXUU3r11Vf13HPPacSIEZ6KHAAAAAAAgOLG5wmbpk2bKiMjQ6VKlVLfvn111113qWvXrkVuaYqKilL37t3VvXt3Pffcc9q3b5/mzZunOXPmaNeuXXrooYd0+vRp/e1vf/N16AAAQGa32ZYky+BWspkZ5lqsz6eUNjaXJJ0zuK33zgPmtmz+LGS3sbkkKTHlpLG5Mm1z7QgbTh4yNpckHU429/lPO1bW2FySlJlmbp1N25X/H7lxpWOXqEA4c+aMJk+eLEkaNmyYqlat6vX+gwcPasaMGZKkMWPGKDw83O8xXsjnPyHZtq3hw4dr9+7dev/999WjR4/LWn+mdu3aGjdunHbs2KF58+apSZMmysjI8GHEAAAAAACgOFu0aJHGjx+vefPmFZqskaSqVatq3rx5eu655/T5558biDAvnydsfv75Z7399tuqXbu2T8e1LEt33nmntm7dqqFDh/p0bAAAAAAAUHwtWLBAlmWpf//+RbrfsiwNGDBAtm3r448/9nN0+fN5XXCNGjV8PWQe1apV8/scAAAAAAD4Hi1RgZCQkCBJuv7664v8nPbt20uSfvrpJ7/EVBhzTeMAAAAAAAABkJSUJOniCkCyW6eSk5P9ElNhSNgAAAAAAIBiLSgoK/2Rmppa5Odk3+tyufwSU2HMbZWQj19//VVnzpxRZmZmoff6ek0cAAAAAADMs+WMdiQ70AEYVa1aNe3evVsbNmwoclvUhg0bJKlIixT7g/GEzddff623335bq1at0smTRds20bKsgGW0AAAAAADAla1Tp07atWuXpk6dqgceeEClSpXyev/58+c1depUWZaljh07GooyN6MJmxEjRnj2MbftkpXNAwAAgWe7zHWDZ6Z5/0HQ19JPRBibK2VfJWNzbQw6bmwuSdoTWbQ/KPqCyzb3F/Zfj4Ybm0uSUpKuMjZXxqkyxuaSJJfBf9tug9+zbLdlbC4gEAYPHqxZs2Zp9+7duuuuuzRnzhyVKZP/94/U1FQNHDhQu3btkmVZGjx4sOFosxhL2EyfPl2xsbGSpHLlyql3795q0aKFIiMjPb1kAAAAAAAUa5Y76wg0J8Rg0PXXX68BAwbogw8+0IIFC/TDDz9o6NCh6ty5s6pVqybLsnTgwAHFxcVp5syZSkpKkmVZ+stf/qIuXboEJGZjCZvsZE3jxo317bffKjo62tTUAAAAAACghHvnnXd07NgxffPNN0pOTtb48ePzvS+7I+jmm2/WnDlzDEaYm7HSloSEBFmWpfHjx5OsAQAAAACUSJbcjjlKmrCwMH311VeaPHmyqlevLtu28z1q1aqlN998U19++aXCwsICFq+xCpuyZcsqLS1N9evXNzUlAAAAAACAh2VZevTRR/XII49o8+bN2rRpk44dOyZJqly5sq699lq1aNFClhX4dZ2MJWwaN26sVatW6eDBg2rZsqWpaQEAAAAAAHKxLEutWrVSq1atAh1KgYy1RA0bNky2bWv+/PmmpgQAAAAAwGHcDjrgZMYqbO666y4tXLhQ8+bNU0xMjB566CFTUwMAAAczuZWsyS1yM9OM/ZglSco4bW5r49RD543NZXqr4bTyacbmMvnaTG99nXaknLG5zp8xu75EpsFtvdlqGyjZjP4kMW/ePD3xxBMaNWqUPvjgA/Xv318NGjQocO/znDp37mwgQgAAAAAAgMAzmrApVaqUWrRooUqVKmnNmjVas2ZNkZ5nWZZcLpefowMAAAAAwN9sOaMdyQ50ACiEsYSNy+XSnXfeqQULFkj6fV9zAAAAAAAA5GYsYTNt2jR9+umnkqQ6depo0KBBat68uSIjIxUUZK6fHAAAAAAAwOmMJWxmzpwpSWrXrp2WLVum8PBwU1MDAAAAAOAQbslyQkuUE2IIjMWLF2vLli36xz/+EehQvDJW2pKYmCjLsjRu3DiSNQAAAAAAICAWLVqk5557LtBhFMpYwiYiIkKSVKtWLVNTAgAAAAAAXJGMtUS1aNFCy5Yt0//+9z+1bNnS1LQAAMDhbLdlbC7LbW7dPHeG0c045UoNNTZX+skIY3PZrmBjc0lSyKkMY3OZ/Oyb/HxIUsbpMsbmMv3abJfB9TcNfs8y+XmEW85oR3JCDL4xd+7ci7o/MTHRT5H4lrGfJEaMGKFvvvlGs2bNUs+ePU1NCwAAAAAAirH77rtPllX0pKNt2xd1f6AYS9j06dNHI0aM0LRp0/TEE09owoQJCg42+xcTAAAAAABQvISGhqp69eoaPnx4ke7/+OOPtWnTJj9HdfmMJWzmzp2rdu3aadOmTZo8ebI++eQT9enTRw0aNFCZMoWXTA4cONBAlAAAAAAA+BMtUb7WrFkz7du3T08++WSR7k9ISCBhk9OFJUr79+/XG2+8UaTnWpZFwgYAAAAAAOTRunVr/fjjj9q/f3+x2ujI6Gp4tm2bnA4AAAAAABRznTp10ldffaXdu3cXKWHTsWNHA1FdPmMJm19++cXUVAAAAAAAOJJluWVZgW9HckIMvnL33Xfr7rvvLvL9Q4YM0ZAhQ/wYkW8YS9hcffXVpqYCAADIl8lta90mt/6V2a2NrSBzVdOmt/U+n1La2FxGP4/FeJv5TMOvzeS/bbbaBko2sz9JAAAAAAAAoFBm09EAAAAAAJRotpyxQxNrzDodFTYAAAAAAKBYiouL065duwIdxiXxecKmWbNm+vjjj309rKSsrcAffPBBTZgwwS/jAwAAAACA4uOGG264YnMIPk/YbN++XQMGDFCzZs30zjvv6Ndff73sMX/44QcNGzZM9evX1/Tp05Wenu6DSAEAAAAAMM3toKNksO0rs/3L5wmbd999V9HR0dq+fbuGDh2qqlWrqn///vrggw+0d+/eIo2RkpKilStX6h//+Ifq16+v66+/XrNmzVJGRob69eun+++/39dhAwAAAAAAOIbPFx0eNGiQ+vXrpzfeeEOvvfaajh8/rk8//VSffvqpJKlSpUpq1aqVqlSpoooVK6pixYo6d+6cTpw4oZMnT2rXrl3auXOn3O6sbF92JuzWW2/Vc889p5iYGF+HDAAAAACAIbacseCvE2KAN37ZJapMmTIaN26cHnvsMb333nt655139MMPP0iSjh8/rmXLlhX43JylShUrVlT//v01cuRINW3a1B+hAgAA+IXtCjY7X5C5H7xdqaWMzeV2md0jIyikeLYIuDPMfh4zM8xtRmv6tclt7jNpuy1jcwFwHr9+Jw0LC9PQoUM1dOhQ7du3TytWrNCqVav0/fffKykpSWfOnPk9kJAQVa5cWc2aNVOnTp3UqVMnXX/99SpVytwPBAAAAAAAAE5gLPVdu3ZtDRw4UAMHDvQ8lpGRoRMnTigsLEyRkZGmQgEAAAAAIDAsd9YRaE6IAV6Zq1XMR2hoqKpWrRrIEAAAAAAAABzHbFMwAAAAAAAAChXQChsAAAAAAEoW929HoDkhBnhDhQ0AAAAAAIDDUGEDAABKjOK8Ra7J7a9tt7ldPE1vj55pcHt0owx/9o1+Hg1/Rorz9xGgOKpUqZLKlSsX6DAuCQkbAAAAAAAMsWTLckA7kqVimqC+wLFjxwIdwiWjJQoAAAAAAMBhSNgAAAAAAAA4DC1RAAAAAACYYrmzjkBzQgzwioQNAAAAAAAoEVwul5YuXapVq1bp559/1pkzZ5SZmen1OZZladmyZYYi/B0JGwAAAAAAUOytWLFCgwcP1r59+zyP2XbBiy9bliXbtmVZgdkdLqAJG9u2deLECaWmpqp69eoKDja7JR8AAAAAAGa5fzsCzQkxmLN582bddtttysjIkG3bCgsLU/369RUZGamgIGcu72s8YZOZmam5c+fq3Xff1fr165WRkSHLshQfH68mTZp47luyZIni4uJUoUIFPf3006bDBAAAuCy22/Bf41wG//AVZG4r2EzD76Nl8LWZZPzz6Db3y4/p12b8vQTgE+PHj1d6erpKly6t1157TYMHD1ZYWFigw/LKaMLmyJEj6tWrl3744QevZUeSVLduXd1xxx2yLEvdu3dXy5YtzQQJAAAAAACKldWrV8uyLD399NN64IEHAh1OkRhLfbvdbt1xxx1au3atLMtS//799e9//7vA+//4xz+qffv2kqSFCxeaChMAAAAAAD9yO+goOdLS0iRJXbt2DXAkRWcsYTN37lytW7dOpUqV0tKlS/XBBx/owQcf9Pqc22+/XbZta/Xq1YaiBAAAAAAAxU2dOnUkSefPnw9sIBfBWMJm/vz5sixLw4cP16233lqk57Rq1UqStHPnTn+GBgAAAAAAirFevXpJkuLi4gIbyEUwlrDZvHmzJOmOO+4o8nOqVKkiSTp+/Lg/QgIAAAAAwDBbgW+Fcv8WR8nx6KOPqlq1apo0aZL27t0b6HCKxFjC5tSpU5J+T8IURXapklO32AIAAAAAAM4XFRWlL774QuHh4bruuus0c+ZMnT59OtBheWVsl6iKFSvq6NGjF1Utk90KFRUV5a+wAAAAioXiutWwZe7vi5Iku2Stwek3Jj+PxfWzD8D3mjdvrri4OF133XUaPny4RowYocqVK6tMmTJen2dZlvbs2WMoyt8ZS9g0adJEK1eu1OrVq3XjjTcW6Tnvv/++LMtS69at/RwdAAAAAAAGWO6sI9CcEINhn376qYYMGaIzZ87Itm3Ztq0jR44U+jzLCkxi2FjC5o477tCKFSs0depUjRw5UpUqVfJ6/7vvvquvvvpKlmWpd+/ehqIEAAAAAADFzZo1azRgwABlZmZKkq6++mo1b95ckZGRjl2GxVjCZvjw4Zo0aZIOHjyom2++WXPnztUf//jHPPft379fEydO1Ntvvy3LslS/fn3dddddpsIEAAAAAMCPshf9DTT/xvDrr7/qiy++0Pr167VhwwYlJyfr6NGjOnfunCIjI9WkSRN169ZNQ4YM0VVXXeXXWCTphRdeUGZmpipUqKD3339ft912m9/nvFzGEjbh4eFauHChbrrpJm3evFnNmzdXw4YNPddHjBiho0ePateuXZIk27ZVrlw5ffLJJ47NdgEAAAAAgLzWrVunO++8M99rR48e1cqVK7Vy5Uq98sor+s9//qNbb73Vr/Fs3LhRlmXpueeeuyKSNZLBhI0ktW3bVt9//73uuecebd26VQkJCZ5r3333nWz7923FGjdurA8//FBNmzY1GSIAAAAAAPCBWrVq6cYbb1Tr1q1Vq1YtVatWTW63W0lJSfrkk0+0YMECHTt2THfccYfWr1+v5s2b+y2WlJQUSVLHjh39NoevGU3YSFKzZs20ZcsWLV26VIsXL9aGDRt05MgRZWZm6qqrrlKrVq10xx13qG/fvn6rrPF1adaXX36p2NhYrVu3TkePHlVUVJRiYmI0bNgwde3atUgxpaam6q233tLHH3+sxMREZWRkqFatWurevbseeeQR1a5du0jjbN++XVOmTNE333yj5ORklS1bVo0bN9bdd9+tIUOGKCTE+H9yAAAAAMBvLLllOaAlyt8x3Hjjjdq3b1+B1/v3769Fixapd+/eysjI0HPPPadPP/3Ub/HUrVtX27dvV2pqqt/m8DXLzlnWUkJ88803uvnmmwu9r3Llyl5Ls2zb1ogRIxQbG1vgGMOGDdO0adO8riq9Z88ede/e3bON+YWye+y6devmNd5Zs2Zp5MiRSk9Pz/d6u3bttGTJEr/1ByYlJalWrVpZXwT/SbLC/TIPAAAoOaygEvejarHAVtvwKfuclLlMUtaapzVr1gxwQBcv5+9K+xfcrZpVygY4IinpyFnV6jNPUmDf18aNGyshIUGVK1fW0aNH/TbP+PHj9c9//lNPP/20nn/+eb/N40sldnGYWrVqaeDAgXrjjTe0YMECrVmzRt99950+/PBD9evXT8HBwZ7SrPj4+HzHeOaZZzzJmlatWmn+/Plat26d5s+fr1atWkmSYmNj9fe//73AOM6ePasePXp4kjVDhw7VsmXL9P333+tf//qXypYtq9OnT6tfv34FxiFJX331lYYNG6b09HRFR0frzTff1A8//KD//ve/6tOnjyRp7dq16tOnj9zuwGdzAQAAAACIiIiQJKWlpfl1ntGjR6t+/fp6/fXXtWHDBr/O5SslssImMzNTwcHBXu/JLs2SpD59+uQpzUpMTFTjxo3lcrnUpk0bxcXFKTz894qS1NRUdenSRRs2bFBISIgSEhJUr169PPOMHz9ezz33nCRp4sSJGjNmTK7ra9asUefOneVyuXTjjTfq22+/zTOGy+VS48aNlZiYqPLly+vHH3/MM9fIkSM1depUSdKcOXM0cOBAr6//UlBhAwAAfI0KmysTFTbwqeJWYbPwTudU2PSeLylw7+uOHTvUrFkzZWZmqk2bNlq/fr1f50tKSlK/fv20ZcsWPfbYY/rrX/+qBg0aKCwszK/zXqoSWWFTWLJGknr16qVGjRpJkuLi4vJcnzx5slwulyRpypQpuZI1klSmTBlNmTJFUlZC5fXXX88zxvnz5/XGG29IyioDGz16dJ572rdvryFDhkiSli9fro0bN+a5Z+HChUpMTJQkjRs3Lt/E0CuvvKKKFSt6zgEAAAAAMC01NVW7d+/Wa6+9phtvvFGZmZmSpEcffdSv8wYHB+vqq6/WunXrlJaWppdfflmtWrVSRESEgoODvR6BWgvW5wmbwl7opRyBenMKKs2ybVuLFy+WJDVq1Ejt2rXL9/nt2rXzbF2+aNEiXVjMtGLFCp06dUqSNGjQoAIXWb7vvvs85wsWLMhzfdGiRfnem1OZMmXUv39/SdK2bdu0e/fufO8DAAAAAJQsBw8eVFJSktfjcsyePVuWZcmyLEVERKhBgwYaPXq0Dh8+LEl64okndPfdd/vipRTItm3PceHXRTkCweeZkOLSYbVjxw5t3rxZkjyVNtl++eUXJScnS5K6dOnidZwuXbpo586dSkpK0t69e1W3bl3PtVWrVuW6ryBt2rRRRESEUlJStHr16jzXs8dp2LChqlat6jWW6dOnS5JWr16t+vXre40dAAAAAOBrtuSAXaKy4sgSExNT+N1++F2/ZcuWmjZtmq677jqfj32hZ5991u9z+JrPEzaFvQlLly71LPDzxz/+UTExMYqOjpZt2zpy5IjWr1+vbdu2ybIstWnTptCdkXwpNTVVycnJ+vzzzzVx4sQCS7N27NjhOb8wmXOhnNd37NiRK2FT1HFCQkJUr149xcfH53qOlLVocXa282JjuViFZVUPHjx40WMCAAAAAIq3Xr16qU2bNpKkc+fOac+ePfroo4+0cOFC3X333Xr99dfVo0cPv8ZAwkbe34Tnn39eGzZsUIsWLRQbG6u2bdvme9+GDRs0bNgwbdiwQT169PC6y9Llmj17tgYPHlzg9fxKs/bv3+85L2xhJs8ivBc8L+fXERERioyMLHSc+Ph4HT16VOnp6SpdurSkrCRKdqbzcmIpipzPBwAAAAAUD+vWrVO1atX8Nn5kZGSu33nbtm2rAQMG6L333tOgQYPUs2dPzZo1q8AlPkoqY4vDLFu2TM8++6waNGig1atXe9aHyU+bNm20atUqXXvttRo/frzat2+vP//5z6ZCleS9NOvMmTOe87Jlva/unfN1nj17Nt9xChsjv3GyEza+igUAAMCJ2G0IQHHjtt1y24FvicoZQ7Vq1QKyS9S9996rJUuW6KOPPtJDDz2knj17ejbLgcGEzZtvvinLsvS3v/3Na7ImW0REhP72t79pyJAhmjJlit8SNpdSmpVzEeLQ0FCv42cnVrLHz2+cwsbwNo6vYimKwqpyDh48WKTeRwAAAAAAJKlnz5766KOPlJKSov/+97+66667jMx75swZ/fLLLzpz5oxnORRvOnfubCCq3IwlbLLXrWnevHmRn9OiRQtJ8ute7JdSmpVzj/aMjAyv46enp3vOL9z6O3ucwsbwNo6vYimKQGRcAQAAAADFV1RUlOf8f//7n9/nmzFjhqZOnar4+PgiP8eyLLlcLj9GlT+fb+tdkBMnTkiSTp8+XeTn/Prrr5KkkydP+iUmb+69917169dPbrdbDz30UK4YypUr5zkvrLUoJSXFc35hy1L2OEVpTypoHF/FAgAAAADwv0zbdszhBNk7MEv+/T01MzNTvXr10ogRIxQfH18yt/UuSPXq1bV37159+umnuvHGG4v0nE8++USS/Lr4kTcFlWblrDQpbOeknG1EFy7aW7NmTf3www9KSUnRqVOnvC48nD1OVFRUrtYmX8UCAAAAAIBpH3/8see8WbNmfptn2rRp+uyzzyRJ0dHRGjx4sFq3bq1KlSopKMhYLctFMZaw6dq1q95++21Nnz5dnTt3Vv/+/b3e/8knn2j69OmyLMvo1t45FVSa1aRJE895QkKC1zFyXm/cuHGua02aNNGnn37qua9du3b5juFyubRnz558xyhbtqxq1aql/fv3X1YsAAAAAAD4yuzZszVgwIBcy3hcaPLkyfriiy8kSXXq1FHHjh39Fs/cuXMlZf0evmrVqiticWNjaaSnnnpK5cuXl9vt1p133qlevXpp0aJFSk5O1vnz5+VyuZScnKxFixapd+/e+utf/6rMzEyVK1dO48aNMxVmLgWVZtWtW1fVq1eXJK1cudLrGHFxcZKkGjVqqE6dOrmu5fwwehtnw4YNnnamDh065LmePc7OnTt16NChAsfJOUd+4wAAAAAA/CvTdjvm8Kfx48erRo0aGjZsmObOnavvvvtOW7Zs0erVq/X222+rY8eOevzxxyVlbaAzY8YMhYT4r6Zkx44dsixLf//736+IZI1kMGFTo0YNLV68WGXLlpVt2/r888/Vt29f1a5dW2FhYSpdurRq166tvn376rPPPpNt2ypXrpwWL16sGjVqmAozl4JKsyzLUs+ePSVlVa2sXbs23+evXbvWU9XSs2dPWVbubSlvuOEGVahQQZI0Z86cAvviZs+e7Tnv3bt3nuu9evXK996cUlNT9dFHH0nKyig2aNAg3/sAAAAAAPCFEydOaMaMGRo0aJA6duyoli1bqlOnTnrwwQf13XffScpa5mPJkiV+2xn6Qg0bNjQyjy8YbdTq0qWL4uPj1bt3bwUFBRW4mE9QUJD69Omj+Ph4denSxedxzJ49O9d22PkprDRr1KhRnuzfww8/nGeb7HPnzunhhx+WJIWEhGjUqFF55ggNDdUjjzwiKSvbN2nSpDz3rFmzRrNmzZKU9f61bds2zz29e/dWvXr1JEkvvfSSp30qpzFjxngWTh4zZkzBLxwAAAAAgMu0bNkyTZs2TX/961/VvHlzRUdHKyQkRGXLllW9evXUt29fvfvuu9q5c6duvvlmv8dTv359Sb9viHQlsOwALXd86NAhLV++XFu3btXJkydl27YqVaqkZs2a6cYbb1TVqlX9NnedOnV05swZ9e3bVx07dlS9evVUtmxZnTlzRlu3btW8efM82b7Q0FAtXbo032zfuHHj9PLLL0uSWrVqpSeffFL16tXTnj17NGHCBG3atMlz34svvphvLGfOnFGbNm20a9cuSdKwYcM0YMAAhYeHa/ny5XrxxRd19uxZhYeH6/vvv1fLli3zHeeLL77Q7bffLrfbrejoaD3zzDOKiYnRyZMnNWPGDM9aOR07dtSKFSsUHBx8We9hfpKSkn5fzDj4T5J18VuHAwAAAEAu9jkpc5mkrI1Ucm68cqXI+bvSzo/7qEaViABHJCUfSVHDfgskXbnv68V45ZVX9OSTT2rUqFF67bXXAh1OkQQsYRNIderUKdL+7jVr1tQ777xTYLbP7XZr6NCheueddwocY8iQIYqNjfW66nRiYqK6deum3bt353u9fPnymjdvnnr06OE13hkzZuihhx5SRkZGvtdjYmK0dOlSVa5c2es4l4qEDQAAAACfI2HjFyUtYZOenq7rrrtOO3fu1Ndff61OnToFOqRCGdslykmWLVumb775RsuXL9eOHTt0+PBhHT9+XGFhYYqOjlbLli3Vo0cP9e/fX2XKlClwnKCgIM2aNUt9+/ZVbGys1q9fr2PHjqly5cpq27athg8frttuu63QeK655hpt2rRJb731lj7++GMlJiYqIyNDtWrVUrdu3fToo4/q6quvLnScoUOHqn379nrzzTe1bNkyHThwQBEREWrcuLHuvvtu3X///X5dxAkAAAAA4J3LtuXy84K/RY2jJCldurS+/vpr9enTRzfffLMeeeQR3XXXXWrUqJHXnawCqURW2MA/qLABAAAA4HPFrMJm+0e9VaNKwYUBpiQfSdUf+y+UdOW+rxcj57Igtm3n2RTIG8uy5HK5/BGWV8bKLbL3PL9UAwcO9FEkAAAAAACgJLmwVuVKqF0xlrC57777LiqDlZNlWSRsAAAAAABXvEzZynRAsiBTgY/BpGeffTbQIVw0owuaXAkZLAAAAAAAULyQsPHil19+KfSelJQU7dy5U/PmzdOCBQt0/fXXKzY2VhERgV9BGwAAAAAAwBRjCZui7HIkSU2aNFHv3r01f/583XvvvXr44Yf1zTff+Dk6AAAAAAD8z227lemAXaLcDogB3gUFOoCC3HnnnRo4cKBWrFih6dOnBzocAAAAAAAAYxybsJGk/v37y7ZtzZ49O9ChAAAAAAAAh/v444/9On5SUpK+//57v86RzdEJm6pVq0qSdu7cGeBIAAAAAAC4fJm/tUQ54SiO/vrXv6pZs2Y+T9zs27dPDzzwgK655hpjy7Y4OmGzb98+SdL58+cDHAkAAAAAAHC6+vXra/v27RowYIDq1Kmjp556Stu3b7+ksVJSUvSf//xHt912m6655hrFxsYqMzNT11xzjY+jzp/Rbb0vxvnz5zVx4kRJMvZmAAAAAACAK9f27dv15ptv6uWXX9a+ffs0YcIETZgwQfXr11e7du3Utm1btWrVSlWqVFHFihVVsWJFnTt3TidOnNDJkye1a9curV+/XuvWrdO6deuUlpYm27YlSbfddpsmTJigpk2bGnktxhI22dUy3rjdbp08eVIbNmzQv//9b23btk2WZWnAgAEGIgQAAAAAwL8ybVuZvyUAAh1HcRQSEqLHH39cw4cP19SpU/XWW29p37592rVrl3bv3q333nuvSONkJ2mCg4PVs2dPjRkzRtddd50/Q8/DWMKmbt26F/0c27bVvn17PfbYY36ICAAAAAAAFEcREREaM2aMRo8erf/7v//TRx99pOXLl2vv3r2FPjc8PFwxMTHq3r277rrrLlWvXt3/AefDWMLGvsjsXaVKlTRs2DD9/e9/V+nSpf0UFQAAAAAAKK6CgoJ066236tZbb5UkJScn6/vvv1dSUpKOHj2qEydOKCwsTFFRUYqKilKzZs3Upk0blSpVKsCRG0zYvPvuu4XeExQUpHLlyqlu3bpq2rSpgoODDUQGAAAAAIAZmbZbLgfs0FRcd4kqTI0aNdSvX79Ah1EkxhI2gwYNMjUVAAAAAADAFc3R23oDAAAAAACURMYqbP7f//t/sixLL7zwgqpVq1ak5xw9elRPPvmkLMvSrFmz/BwhAAAAAAD+xS5RKCpjFTazZ8/W7NmzdfLkySI/59dff/U8DwAAAAAAoKSgJQoAAAAAAMBhjLVEXYq0tDRJYltvAAAAAECx4LZtR+zQ5KYlyvEcXWHz3XffSZKio6MDHAkAAAAAAIA5fquw+ec//5nv41OnTlWVKlW8Pjc9PV179uzRZ599Jsuy1KFDB3+ECAAAAAAA4Eh+S9iMHz9elmXlesy2bb399ttFHsO2bYWFhWnMmDG+Dg8AAAAAAOPYJQpF5deWKNu2PYdlWbIsK9djBR2lS5dWnTp1dPfdd2vNmjVq0aKFP8MEAAAAAABwFL9V2LjduRdRCgoKkmVZ2rZtm5o0aeKvaQEAAAAAcCyX7ZbLAYsOOyEGeGdsl6jatWvLsiyFhoaamhIAAAAAAKBQP/74o2bPnq2jR4/q6quv1p133hnwbh9jCZu9e/eamgoAAAAAAKBIfvjhB3Xp0kXnz5+X/dvaPq+++qpeeeUVjRo1KmBxGUvYAAAAAABQ0rnljEWH3Qp8DE7x/PPPKyMjQ0OGDFGnTp20a9cu/fvf/9YTTzyhDh06qG3btgGJi4QNAAAAAAAosTZt2qSbb75ZM2bM8Dx2zz33qEWLFnrrrbc0e/bsgMTl84TNTTfdJEmyLEvLli3L8/iluHAsAAAAAAAAXzh06JAGDx6c67FGjRrp9ttv1+rVqwMUlR8SNitWrJCUlWS58PHsbb2LKvv+C8cCAAAAAOBKlGm7lemAHZqcEINT2Lad7wZJ9evX1xdffBGAiLL4PGHTuXPnfBMsBT0OAAAAAADgNGFhYUpPTw/Y/H6rsCnq4wAAAAAAAIE0ZcoU/fjjj2rbtq3atGmjNm3aBDokFh0GAAAAAMCUTNsZu0Q5IQanaNq0qRISEvTZZ5/ps88+83QHhYeHS5ImTZqk5s2bq0WLFoqOjjYWFwkbAAAAAABQYsXHxys9PV1btmzRjz/+qI0bN+rHH3/Utm3bZNu2xo4d60niVKlSRS1atFDLli318ssv+zUuYwmboKAgBQUFKT4+Xk2aNCnSc/bs2aP69esrKChILpfLzxECAAAAAICSqHTp0oqJiVFMTIznsfPnzys+Pj5XEmfr1q36+uuv9X//93/FJ2Ej6aJ2iPLF8wAAAAAAcJJM25bLATs00RJVuFKlSql169Zq3bq1hg4dKklyuVzavn27Nm7c6Pf5Hd0SlZ2oYXcpAAAAAABwuWzb1vnz5/PdxrsoQkJC1KJFC7Vo0cLHkeUV5PcZLsPx48clSREREQGOBAAAAAAAXGls29bcuXPVq1cvRUdHq1SpUgoPD1eFChXUoEED3X333Zo9e7YOHz4c6FDzMF5hU9RqmZSUFE2ZMkWSVK9ePX+GBAAAAACAEewSZc7PP/+snj176qeffpKUe7mVM2fO6OzZs9qzZ48++OADlSpVSgMHDtSTTz7pmByE3xI2f/jDH/J9/JZbblGpUqW8Pjc9PV1HjhyR2+2WZVm6/fbb/REiAAAAAAAohg4cOKDrr79eR48e9SRqwsLCFB0drdDQUJ08eVKnTp3ybHCUkZGhWbNm6b333tPkyZM1YsSIQIYvyY8Jm7179+Z5zLZtJScnX9Q47dq109ixY30UFQAAAAAAKO5GjBihI0eOSJL+9Kc/6ZlnnlGHDh0UEvJ7GiQzM1ObN2/W6tWr9c4772jr1q1KT0/XyJEj9eOPPyo2NjZQ4UvyY8Jm0KBBub6eM2eOLMvSHXfcocjIyAKfZ1mWwsLCVK1aNV1//fW66aabWHQYAAAAAFAsZNpuZTpil6jAx+AvCQkJWrJkiSzL0uDBgzVjxox88wrBwcGeXaAeffRRLV26VMOGDdPBgwc1a9Ys1a1bV+PGjQvAK8jit4TNu+++m+vrOXPmSJL+9a9/qUmTJv6aFgAAAAAAlGDvv/++JCkqKkpTpkwpchFI9+7dtWXLFnXt2lU//vij/v73v+uWW25R69at/RlugYztEvXss8/qH//4h6pUqWJqSgAAAAAAUMKsW7dOlmXpzjvvVHh4+EU9t3Llylq6dKlq164t27b14osv+inKwhnbJerZZ581NRUAAAAAAI7kdruV6Q58O5LbATH4S0JCgqSsNXEvRXR0tF5++WXdddddWrx4sfbu3as6der4MMKiMVZhAwAAAAAA4G+nTp2SJNWuXfuSxxgwYICuueYa2batb7/91keRXRyfV9js27fP10NKurw3GgAAAAAAlAxnzpyRJJUrV+6yxunevbveeOMNrVq1Sv/v//0/X4R2UXyesKlbt66vh5RlWZ690QEAAAAAuFJl2rYybTvQYTgiBn+xbVuWZSko6PKaijp06KA33nhDW7du9VFkF8fnCRu7GP9HBwAAAAAAJUP2pkknTpwIyPw+T9hcuJ03AAAAAADIkilbLjvwC/5mqvgXWxR1O++CVKxYUVIxStgMGjTI10MCAAAAAABclI4dO6p58+Zq0aKF5/jjH/+o0qVLF+n52S1V2WvimGZsW28AAAAAAAATbNvWyZMnFRcXp7i4OM/jwcHBql+/fq4kTosWLVStWrUARps/xyds1q9fr7lz52rKlCmBDgUAAAAAgMvCosP+N3XqVG3evFmbN2/Wtm3blJqa6rnmcrmUkJCghIQEffjhh57HK1WqlCeJk5mZGYjwPRyZsElKStJ7772n9957Tzt37pQkEjYAAAAAAKBQI0aM8Jzbtq2dO3d6EjibN2/Wli1bdPjw4VzPOX78uJYvX67ly5d7HrvcNXAul2MSNikpKfrkk080d+5crVy50rPbVPZ2XAAAAAAAABfDsiw1atRIjRo10oABAzyPHz58WJs2bcqVyElMTJTb/fuC0IHeBTugCRvbtvXNN99o7ty5WrRokadMKftNqVmzpvr06aO+ffsGMkwAAAAAAHwi03Yr0wm7RDkghkCKjo5W165d1bVrV89j586d05YtW3IlcbZt26Zz584FJMaAJGy2b9+uOXPm6P3339fBgwcl/Z6kqV27tvr166e//OUvuu666wIRHgAAAAAAKGHCw8PVrl07tWvXzvOYbdvatWtXQOIxlrA5evSo5s2bp7lz52rLli2Sfk/SREZG6tSpU7IsSxMnTlT//v1NhQUAAAAAAJAvy7LUsGHDgMzt14RNenq6Fi9erLlz5+rrr79WZmamJ0lTunRpdevWTffcc4+6deum8PBwf4YCAAAAAEDAuR2yS5TbATHAO78kbFavXq25c+fq448/1q+//irp98WDO3XqpHvuuUf9+/dXhQoV/DE9AAAAAAAogfbt2+eXcWvXru2Xcb3xS8Kmc+fOsizLU03TpEkT3X333br77rsD8iIBAAAAAEDxV7duXZ+PaVmWXC6Xz8ctjF9bosqVK6c33nhD9913nz+nAQAAAADgiuCy3XI5YIcmJ8TgD4HeituX/JawsW1bZ8+e1ZAhQ/Taa6/pnnvu0V133aWaNWv6a0oAAAAAAFCCvfvuu16vT506VevXr1epUqV0yy23KCYmRtHR0bJtW0eOHNH69ev19ddf6/z582rbtq0eeOABQ5Hn5ZeEzapVqzRnzhx98sknOnXqlLZt26Zx48bpqaeeUqdOnXTvvffqL3/5i8qXL++P6QEAAAAAQAk0aNCgAq/df//92rBhg2655RbNmjVLNWrUyPe+5ORkDR06VF999ZWaNWumGTNm+Ctcr4L8MWiHDh0UGxurQ4cO6cMPP1S3bt0UHBwst9utuLg4DR06VFWrVlW/fv302WefBaQXDAAAAAAA0zJ/2yXKCUdJ8sknn+idd95RmzZttHTp0gKTNZJUo0YNff7552rdurXeeecdffTRRwYj/Z1fEjbZQkND1a9fPy1ZskTJycl69dVX1bx5c9m2rbS0NC1YsEC9e/dWdHS0P8MAAAAAAAAl2PTp02VZlh5//HEFBwcXen9wcLBGjx4t27YVGxtrIMK8/JqwySkqKkqPPfaYNm3apPj4eD3++OOqWrWqbNvWyZMnZVmWJOnxxx/Xo48+qlWrVpkKDQAAAAAAFGPx8fGSpAYNGhT5Odn3bt261S8xFcZYwianpk2batKkSdq/f7+++OILDRgwQGFhYbJtWwcOHNC///1v3XDDDapWrZoefPBBLVu2LBBhAgAAAADgU27bVqbtDvjhLmEtUWfOnJEkHTlypMjPyb43+7mmBSRh45k8KEhdu3bV+++/r0OHDik2NladOnWSlLXL1OHDhzV9+nTdeuutgQwTAAAAAABcwa6++mpJ0ty5c4v8nOx7a9eu7ZeYChPQhE1O5cqV0/3336+VK1dqz549Gj9+vK655hrZtl2s9lEHAAAAAABm9ezZU7Zt64MPPtDEiRMLvX/SpEmaP3++LMtS7969DUSYl2U7PBvy3Xff6b333tO0adMCHQoKkZSUpFq1amV9EfwnyQoPbEAAAAAArnz2OSkza5mM/fv3q2bNmgEO6OLl/F3ptSktVOmq0ABHJJ04nqHHH94i6cp9Xy/GqVOn1KRJEx0+fFiS1Lx5cw0aNEht27ZVlSpVZFmWDh8+rPXr1+u9997T5s2bZdu2qlWrpu3btysyMtJ4zCHGZ7xIHTp0UIcOHQIdBgAAAAAAuEJFRkbqm2++0a233qrk5GTFx8dr9OjRBd5v27Zq1qypL7/8MiDJGslBLVEAAAAAAAD+0qRJE23fvl2PPfaYIiMjPUuwXHhERkbq8ccf17Zt29SkSZOAxev4ChsAAAAAAIoLl+2Wy3YHOgxHxBAI5cuX16uvvqqXXnpJGzdu1NatW3Xy5EnZtq1KlSqpWbNmat26tUJDA9+2RsIGAAAAAACUKKGhoWrfvr3at28f6FAKRMIGAAAAAABD3LatTAfs/eN2QAzwjjVsAAAAAAAAHIaEDQAAAAAAgMPQEgUAAAAAgCGZcivTAQv+ZirwMcA7KmwAAAAAAECxsXHjxkCH4BMkbAAAAAAAQLHRtm1b1axZU8OHD9eSJUuUlpYW6JAuCS1RAAAAAAAYkumQXaKcEIM/HThwQDNnztTMmTMVFhamm266Sbfffrt69Oih6tWrBzq8IqHCBgAAAAAAFBtJSUmaNm2aunXrprCwMJ07d05Lly7VAw88oFq1aql169YaP36841unSNgAAAAAAIBio3r16ho2bJg+//xzHTt2TIsXL9bQoUNVrVo12batTZs26fnnn1dMTIxq1KjhuffcuXOBDj0XWqIAAAAAADDEbduO2CXKXcxborKFh4fr9ttv1+233y4pa0Hizz//XEuWLNGPP/6ogwcPatasWZo1a5bjWqeosAEAAAAAACVCdjvUhg0bHN86RcIGAAAAAACUODlbp44fP67PPvvMa+vU8OHDtWXLFmPx0RIFAAAAAIAhLtstlwNaopwQg5OEhYWpR48e6tGjh6Ss1qklS5bo888/16ZNm3Tw4EHNnDlTNWrUUIsWLYzERMIGAAAAAAAgh9atW6t169Z69tlndeDAAS1ZskRLlixRmTJljMVAwgYAAAAAAKAA2a1Tw4YNMzovCRsAAAAAAAzJtG1lOmCHJifEAO9YdBgAAAAAAMBhSNgAAAAAAAA4DC1RAAAAAAAY4rbdynTADk1uB8QA70jYAAAAAACAYqNy5cpq0aKFWrZs6TmaNGmi4ODgQId2UUjYAAAAAACAYuPEiRNasWKFVqxY4XksNDRUTZo0yZXEadGihcqXLx+4QAtBwgYAAAAAAEPYJcr/brzxRsXHx+v48eOex9LT07V582Zt3rw517116tTJlcRp2bKlatWqZTji/JGwAQAAAAAAxcayZcskSUlJSZ4kzaZNm7R582bt3btXdo5k1S+//KK9e/dq0aJFnscqVqyYp6WqWbNmpl8GCRsAAAAAAOB7P/74o7788kutWrVK27Zt05EjR1SqVClVr15d119/vYYMGaJOnTr5bf6aNWuqZs2a6tGjh+exM2fO5ErgbN68WT/99JMyMjI891zYUmVZllwul9/iLAgJGwAAAAAADMl0u+VyB36Hpkw/x9ClSxfFxcXleTwjI0O7d+/W7t27NWfOHN17772aOXOmQkND/RpPtnLlyqlTp065EkUul0s//fRTriTOli1bdOrUKSMxFYSEDQAAAAAA8Knk5GRJUvXq1dWvXz916tRJtWvXVmZmptasWaNXX31VycnJeu+99+RyufT+++8HLNaQkBA1b95czZs3V8uWLbVo0SKdOnVKp0+fztU+ZVpQwGYOsB9//FEvvviibrvtNtWqVUulS5dW2bJl1aBBA913331atWrVRY335Zdfqk+fPqpZs6ZKly6tmjVrqk+fPvryyy+LPEZqaqpeeeUVxcTEqFKlSipbtqwaN26sJ554Qvv27SvyONu3b9eIESN0zTXXKDw8XFFRUercubOmT58ekDIuAAAAAECWTP2+8HBADz+/zkaNGunDDz/Uvn379Prrr6tv375q27at2rVrp8cee0ybN29WgwYNJEnz58+/6N/BfcXtdmv58uUaNWqU6tatq2uvvVb//Oc/FR8fL9u2FRQUpI4dOwYkNssOZLooQAoqzbpQUUqzbNvWiBEjFBsbW+A9w4YN07Rp02RZVoH37NmzR927d9fOnTvzvV6hQgW9//776tatm9eYZ82apZEjRyo9PT3f6+3atdOSJUt01VVXeR3nUiQlJf2+mnbwnyQr3OdzAAAAAChh7HNSZtYisvv371fNmjUDHNDFy/m70iMT6qh8xcA3u/x60qU3n9wrKXDv65IlS3T77bdLkh555BG98cYbRuZNSUnRl19+qcWLF2vp0qWe1qfs9EiZMmV08803q2fPnurRo4cqV65sJK4LBf5TEgC+LM165plnPMmaVq1aaezYsapXr5727NmjiRMnatOmTYqNjVVUVJReeOGFfMc4e/asevTo4UnWDB06VAMGDFB4eLiWL1+ul156SadPn1a/fv20Zs0aNW/ePN9xvvrqKw0bNkxut1vR0dF6+umndd111+nEiROaMWOGFixYoLVr16pPnz5avny5goJKbIEVAAAAACDAbrjhBs/5nj17/DrX4cOH9dlnn2nx4sX69ttvPUUO2UmaKlWqqEePHurZs6duvvlmhYWF+TWeoiiRFTY9evTQwIED1bdvXwUHB+e5fuzYMXXo0EG7du2SJMXFxeW7cnViYqIaN24sl8ulNm3aKC4uTuHhv1eVpKamqkuXLtqwYYNCQkKUkJCgevXq5Rln/Pjxeu655yRJEydO1JgxY3JdX7NmjTp37iyXy6Ubb7xR3377bZ4xXC6XGjdurMTERJUvX14//vhjnrlGjhypqVOnSpLmzJmjgQMHFvZWXRQqbAAAAAD4XDGrsBn5cm3HVNi89bespTcC9b6eOHHC0/1x++2367PPPvPp+Dt37tSiRYu0ePFirVu3zpOcyf7/hg0bqmfPnurZs6fatWvntSsmEEpkicWSJUvUv3//fJM1klS5cmW9+uqrnq8/+eSTfO+bPHmyZ02YKVOm5ErWSFllVFOmTJGUlVB5/fXX84xx/vx5T9lX48aNNXr06Dz3tG/fXkOGDJEkLV++XBs3bsxzz8KFC5WYmChJGjduXL6JoVdeeUUVK1b0nAMAAAAAECgrV670nDdq1Mhn4z755JNq1KiRmjRpoqeeekpr166V2+2WZVlq3769JkyYoISEBO3YsUMvv/yy2rdv77hkjVRCEzZFUVhplm3bWrx4saSsD1a7du3yHaddu3Zq2LChJGnRokV5VphesWKFp19u0KBBBbYp3XfffZ7zBQsW5Lm+aNGifO/NqUyZMurfv78kadu2bdq9e3e+9wEAAAAASo6DBw8qKSnJ6+FrbrdbL7/8sufr7N9VfeGVV17R7t27Zdu2wsLCdMcdd2jWrFk6ePCgVq9erTFjxngWPHaywNdhOVRGRobnPL8kyi+//OJZC6dLly5ex+rSpYt27typpKQk7d27V3Xr1vVcy7kStrdx2rRpo4iICKWkpGj16tV5rmeP07BhQ1WtWtVrLNOnT5ckrV69WvXr1/caOwAAAADAd9y/7dIUaO4cMcTExBR6v69XU5k8ebLWrVsnSerdu7fatGnj0/ElybIsdejQQS1btlTFihWVkpKiqKgon8/jLyRsClBYadaOHTu8Xs8p5/UdO3bkStgUdZyQkBDVq1dP8fHxuZ4jZS1anJ3xvNhYLkZhWdWDBw9e1HgAAAAAgJJn5cqV+tvf/iYpa7Hft99+2+dzZCeYli1bpmXLlnkeL1++vJo3b66WLVt6jqZNm6pUqVI+j+FykbDJR1FKs/bv3+85L2xxJs9CvBc8L+fXERERioyMLHSc+Ph4HT16VOnp6SpdurSkrERK9ofxcmIpTM7nAgAAAACKh3Xr1qlatWpG5tq+fbt69+4tl8ul0qVL66OPPlJ0dLRP55g6dao2b96szZs3a9u2bUpNTfVcO336tFavXp2rcyUkJESNGjXKlcTJrsoJJBI2+ShKadaZM2c852XLlvU6XkREhOf87Nmz+Y5T2Bj5jZOdsPFVLAAAAAAA/3LZbrlsd6DDyBVDtWrVjOwS9csvv+iWW27RyZMnFRwcrPnz5xe6xMilGDFihOfctm3t3LnTk8DZvHmztmzZosOHD3vuOX/+vLZu3apt27bpP//5j+fxmjVrqmXLlmrVqpXGjx/v8zgLQ8LmAkUtzUpLS/Och4aGeh0zO7EiSefOnct3nMLG8DaOr2IpTGEVOQcPHixS7yMAAAAAoGQ5cOCA/vznP+vAgQOyLEvvvPOOevfu7fd5LctSo0aN1KhRIw0YMMDz+OHDh7Vp06ZciZzExES53b8nsvbv36/9+/dryZIlJGwC7WJKs8LCwjznORcozk96errn/MKtv7PHKWwMb+P4KpbCmMi4AgAAAACKl2PHjunmm2/Wzz//LEmaMmWKBg4cGNCYoqOj1bVrV3Xt2tXz2Llz57Rly5ZcSZxt27ZddLGDr5Cw+c3FlmaVK1fOc15Ya1FKSorn/MKWpexxitKeVNA4vooFAAAAAOBfmQ7ZJcpUDKdPn9att96qn376SZL08ssva+TIkUbmvljh4eFq166d2rVr53nMtm3t2rUrIPHk3a+6BLqU0qyc1SaF7Z6Us5XowoV7s8dJSUnRqVOnijROVFRUrtYmX8UCAAAAAICvpKamqnv37vrxxx8lSU8//bSefPLJAEd1cSzLUsOGDQMyd4mvsLnU0qwmTZp4zhMSErzem/N648aN84zz6aefeu7LmcnLyeVyac+ePfmOUbZsWdWqVUv79++/rFgAAAAAAPCFjIwM9e7dW999950k6dFHH9ULL7zg93n37dvnl3Fr167tl3G9KdEJm8spzapbt66qV6+uAwcOaOXKlV7vjYuLkyTVqFFDderUyXWtY8eOnvOVK1cWmLDZsGGDp52pQ4cOea537NhR8+fP186dO3Xo0CFVrVo133FyxprfOAAAAAAA/3HbbmU6YJcot59juPPOO/X1119Lkm666SYNGTJE27ZtK/D+0NBQNWjQ4LLnrVu37mWPcSHLsuRyuXw+bmFKbEvU5ZZmWZalnj17SsqqWlm7dm2+961du9ZT1dKzZ09ZlpXr+g033KAKFSpIkubMmSO7gD7C2bNne87za9fq1atXvvfmlJqaqo8++khSVmWPL/4xAAAAAABwoQULFnjOv/32WzVv3lzNmjUr8Ljlllt8Mq9t2345AqFEVtj4qjRr1KhRmjFjhlwulx5++GHFxcXl2nnp3LlzevjhhyVJISEhGjVqVJ4xQkND9cgjj+j555/Xjh07NGnSJI0ZMybXPWvWrNGsWbMkSV26dFHbtm3zjNO7d2/Vq1dPe/bs0UsvvaR+/fqpXr16ue4ZM2aMTp486TkHAAAAAKA4effdd71enzp1qtavX69SpUrplltuUUxMjKKjo2Xbto4cOaL169fr66+/1vnz59W2bVs98MADhiLPq0QmbHxVmtWgQQM98cQTevnll7VhwwZ16NBBTz75pCdxMmHCBG3atElSVoKkfv36+Y4/ZswYffjhh9q1a5fGjh2rxMREDRgwQOHh4Vq+fLlefPFFuVwuhYeH6/XXX893jFKlSunNN9/U7bffrl9//VUdOnTQM888o5iYGJ08eVIzZszwrJXTsWNH3XvvvRfzlgEAAAAAfCDTNrdDU2Fx+FOgqlIGDRpU4LX7779fGzZs0C233KJZs2apRo0a+d6XnJysoUOH6quvvlKzZs00Y8YMf4XrlWUH6l0MoAvbkgpz9dVXa+/evflec7vdGjp0qN55550Cnz9kyBDFxsYqKKjgDrTExER169ZNu3fvzvd6+fLlNW/ePPXo0cNrrDNmzNBDDz2kjIyMfK/HxMRo6dKlqly5stdxLkVSUtLvO08F/0mywr0/AQAAAAAKY5+TMpdJytr1NucuuVeKnL8r3ft8VZWtGBzgiKSzJzP13t8PSbpy39eL8cknn6h///5q27atvv/+ewUHe/9vkJmZqfbt22vjxo2aP3+++vfvbyjS35XYNWx8JSgoSLNmzdLSpUvVs2dPVa9eXaGhoapevbp69uypL774QjNnzvSarJGka665Rps2bdKECRPUpk0bRUZGqkyZMmrYsKEee+wxxcfHF5qskaShQ4dq48aNGjp0qP7whz8oLCxMV111lTp27Ki3335b3333nV+SNQAAAAAAONX06dNlWZYef/zxQpM1khQcHKzRo0fLtm3FxsYaiDCvEtkS5Y+iom7duqlbt26XNUZERITGjh2rsWPHXtY4TZs2DdgHCgAAAABQsEzbrUz74ro+/BVHSRIfHy9JF7X5Tva9W7du9UtMhaHCBgAAAAAAFGtnzpyRJB05cqTIz8m+N/u5ppGwAQAAAAAAxdrVV18tSZo7d26Rn5N9b+3atf0SU2FI2AAAAAAAYEim7ZbLAUdJa4nq2bOnbNvWBx98oIkTJxZ6/6RJkzR//nxZlqXevXsbiDCvErmGDQAAAAAAKDn+9re/ae7cuTp8+LDGjRun+fPna9CgQWrbtq2qVKkiy7J0+PBhrV+/Xu+99542b94sSapataqefPLJgMRMwgYAAAAAAEMyZSvTDxvhXEocJUlkZKS++eYb3XrrrUpOTlZ8fLxGjx5d4P22batmzZr68ssvFRkZaS7QHGiJAgAAAAAAxV6TJk20fft2PfbYY4qMjJRt2/kekZGRevzxx7Vt2zY1adIkYPFSYQMAAAAAAEqE8uXL69VXX9VLL72kjRs3auvWrTp58qRs21alSpXUrFkztW7dWqGhoYEOlYQNAAAAAACmZNpuZdpWoMMocYsOXyg0NFTt27dX+/btAx1KgWiJAgAAAAAAcBgSNgAAAAAAAA5DSxQAAAAAAIa4bWfsEuV2QAzwjgobAAAAAAAAhyFhAwAAAAAA4DC0RAEAAAAAYIjLtuVywA5NLlqiHI8KGwAAAAAAAIchYQMAAAAAAOAwtEQBAAAAAGBIpkN2iXJCDPCOChsAAAAAAACHIWEDAAAAAADgMLREAQAAAABgiNt2K9MB3UhuB+xUBe+osAEAAAAAAHAYEjYAAAAAAAAOQ0sUAAAAAACGsEsUiooKGwAAAAAAAIchYQMAAAAAAOAwtEQBAAAAAGBIpu2WywHdSJnsEuV4VNgAAAAAAAA4DAkbAAAAAAAAh6ElCgAAAAAAQ9glCkVFhQ0AAAAAAIDDUGEDAAAAAIAhmbIdseBvpqiwcToqbAAAAAAAAByGhA0AAAAAAIDD0BIFAAAAAIAhbretzMB3RMntpiXK6aiwAQAAAAAAcBgSNgAAAAAAAA5DSxQAAAAAAIZk2m5l2lagw1CmTUuU01FhAwAAAAAA4DAkbAAAAAAAAByGligAAAAAAAxx2W4FO6AlykVLlONRYQMAAAAAAOAwJGwAAAAAAAAchpYoAAAAAAAMcdu2Mh3QjeSmJcrxqLABAAAAAABwGBI2AAAAAAAADkNLFAAAAAAAhmTatjId0I7khLYseEeFDQAAAAAAgMOQsAEAAAAAAHAYWqIAAAAAADDEbUtu2wp0GOwSdQWgwgYAAAAAAMBhSNgAAAAAAAA4DC1RAAAAAACYYluSO/AtUbI9/wOHosIGAAAAAADAYUjYAAAAAAAAOAwtUQAAAAAAGGK7LdkOaImy3RItUc5GhQ0AAAAAAIDDUGEDAAAAAIAhzqqwgZNRYQMAAAAAAOAwJGwAAAAAAAAchpYoAAAAAABMcQc5oiVKbltSZqCjgBdU2AAAAAAAADgMCRsAAAAAAACHoSUKAAAAAABT3FbWEWjsEuV4VNgAAAAAAAA4DAkbAAAAAAAAh6ElCgAAAAAAQ2zbcsQuUbYd6AhQGCpsAAAAAAAAHIaEDQAAAAAAgMPQEgUAAAAAgCG22yEtUewS5XhU2AAAAAAAADgMCRsAAAAAAACHoSUKAAAAAABDbLcc0hLFNlFOR4UNAAAAAACAw5CwAQAAAAAAcBhaogAAAAAAMMUdlHUEGrtEOZ4DPiUAAAAAAADIiYQNAAAAAACAw9ASBQAAAACAIbZtOWOXKDvwMcA7KmwAAAAAAAAchoQNAAAAAACAw9ASBQAAAACAIbbbIS1RDogB3lFhAwAAAAAA4DBU2AAAAAAAYAgVNigqKmwAAAAAAAAchoQNAAAAAACAw9ASBQAAAACAIbREoaiosAEAAAAAAHAYEjYAAAAAAAAOQ0sUAAAAAACmuIOyjkBzBzoAFMYBnxIAAAAAAADkRMIGAAAAAADAYWiJAgAAAADAENt2xg5Nth3oCFAYKmwAAAAAAAAchoQNAAAAAACAw9ASBQAAAACAKW7LES1RckIM8IoKGwAAAAAAAIchYQMAAAAAAOAwtEQBAAAAAGCI7ZCWKCfEAO+osAEAAAAAAHAYEjYAAAAAAMDnjhw5oiVLlugf//iHbrvtNlWuXFmWZcmyLN13332BDs/xaIkCAAAAAMAUt+WMHZoMxBAdHe33OYozKmwAAAAAAIBf1apVS7fcckugw7iilNiEja9Ls7788kv16dNHNWvWVOnSpVWzZk316dNHX375ZZHHSE1N1SuvvKKYmBhVqlRJZcuWVePGjfXEE09o3759RR5n+/btGjFihK655hqFh4crKipKnTt31vTp0+VyuS76tQEAAAAAcLH+8Y9/6PPPP9ehQ4e0b98+TZ8+PdAhXVFKbEuUr0qzbNvWiBEjFBsbm+vx5ORkLVy4UAsXLtSwYcM0bdo0WVbBJWd79uxR9+7dtXPnzlyPJyQkKCEhQTNnztT777+vbt26eY1n1qxZGjlypNLT0z2PpaWladWqVVq1apVmz56tJUuW6KqrrrqEVwsAAAAAuBy2HSTbHfjaCdu2/T7Hc8895/c5irPAf0oc4HJKs5555hlPsqZVq1aaP3++1q1bp/nz56tVq1aSpNjYWP39738vcIyzZ8+qR48enmTN0KFDtWzZMn3//ff617/+pbJly+r06dPq16+f4uPjCxznq6++0rBhw5Senq7o6Gi9+eab+uGHH/Tf//5Xffr0kSStXbtWffr0kdvtvqTXCwAAAAAA/K/EVtj84x//UNu2bdW2bVtFR0dr7969qlu37kWNkZiYqIkTJ0qS2rRpo7i4OIWHh0uS2rZtqzvuuENdunTRhg0bNGHCBA0ePFj16tXLM86kSZOUkJAgSZo4caLGjBnjuda+fXvdeOON6ty5s1JTUzVq1Ch9++23ecZwuVx66KGH5Ha7Vb58eX333Xe55uratatGjhypqVOnKi4uTv/5z380cODAi3q9AAAAAIDLY7st2Q5YdNgJMcC7Elth89xzz6lHjx6X1Ro1efJkz5owU6ZM8SRrspUpU0ZTpkyRlJVQef311/OMcf78eb3xxhuSpMaNG2v06NF57mnfvr2GDBkiSVq+fLk2btyY556FCxcqMTFRkjRu3Lh8E0OvvPKKKlas6DkHAAAAAADOVGITNpfLtm0tXrxYktSoUSO1a9cu3/vatWunhg0bSpIWLVqUp09wxYoVOnXqlCRp0KBBCgrK/z9JzoWQFyxYkOf6okWL8r03pzJlyqh///6SpG3btmn37t353gcAAAAAKDkOHjyopKQkrwfMK7EtUZfrl19+UXJysiSpS5cuXu/t0qWLdu7cqaSkpDytV6tWrcp1X0HatGmjiIgIpaSkaPXq1XmuZ4/TsGFDVa1a1Wss2Stzr169WvXr1/caOwAAAADAd5zYEhUTE1P4/QYWKUZuVNhcoh07dnjOGzVq5PXenNdzPu9ixgkJCfG0OV04xtmzZz0Zz8uJBQAAAAAAOAMVNpdo//79nvOaNWt6vbdWrVr5Pi/n1xEREYqMjCx0nPj4eB09elTp6ekqXbq0JCkpKcmT7bycWApTWBncwYMHL2o8AAAAAEDgrVu3TtWqVQt0GLgACZtLdObMGc952bJlvd4bERHhOT979my+4xQ2Rn7jZCdsfBVLYXImewAAAAAAl8BtZR2BliOGatWqFfrHf5hHS9QlSktL85yHhoZ6vTc7sSJJ586dy3ecwsbwNo6vYgEAAAAAAM5Ahc0lCgsL85xnZGR4vTc9Pd1zfuHW39njFDaGt3F8FUthCmuhOnjwYJEWqwIAAAAAAN6RsLlE5cqV85wX1lqUkpLiOb+wZSl7nKK0JxU0jq9iKQwlcgAAAABweWy3HLJLVKAjQGFoibpEOZMXhS3Gm7My5cJ1YLLHSUlJ0alTp4o0TlRUVK7WJl/FAgAAAAAAnIGEzSVq0qSJ5zwhIcHrvTmvN27c+JLGcblc2rNnT75jlC1b1pN8uZxYAAAAAACAM9ASdYnq1q2r6tWr68CBA1q5cqXXe+Pi4iRJNWrUUJ06dXJd69ixo+d85cqVateuXb5jbNiwwdPO1KFDhzzXO3bsqPnz52vnzp06dOiQqlatmu84OWPNbxwAAAAAgP/YdpBsd+BrJ2zb/zGsXr1aiYmJnq+PHTvmOU9MTNTs/9/evUdXVZ55HP+d3EPCLRBuQogIURSsVgxogohaHNEMaKtY5RLFaHGs4hJQmRkstUyVERa2jiIlEESruKTjDCYzYqhUbikXEWQEATVACjYgSSAXcjt7/sjKISHJSQLnvOdN+H7Wylqbc969n2fnnLwkz3nevTMy6o1PTU31e05tCQWb8+RyuTRu3Di98cYb2rdvn3JychottuTk5Hi6WsaNGyeXq/5axZtvvlmdO3dWUVGRVqxYoVmzZjUYI6neG/nuu+9u8Pz48eP17rvvesY+99xzDcaUlpbq/fffl1TT2ZOQkNDyEwYAAAAAoBWWLl2qFStWNPrcpk2btGnTpnqPUbCpL/BlvTZs+vTpCgmpqXn98pe/bHCb7LKyMv3yl7+UJIWEhGj69OkNjhEWFqYnn3xSkrR371698sorDcZs2bJF6enpkqRRo0bp+uuvbzDm7rvv1mWXXSZJ+u1vf+tZPlXXzJkzVVBQ4NkGAAAAAAB2umg7bHzRmpWQkKAZM2bopZde0vbt25WUlKRnn31Wl112mb755hu9/PLL2rlzp6SaAsmgQYMazWXmzJlatWqV9u/fr1mzZungwYO6//77FRkZqU8//VT/9m//pqqqKkVGRmrRokWNHiM0NFS/+93vlJKSolOnTikpKUn/8i//osTERBUUFOgPf/iDVq9eLalm+dSkSZNa8d0CAAAAAPiC43ZZcpco/+eQkZHR4G9rtJzLcRwn0EkEQmpqapOtWY1p6tvkdruVlpamZcuWNbnv1KlTtWTJEgUFNd3QdPDgQY0dO1YHDhxo9PlOnTrpnXfe0V133eU1zz/84Q964oknVFFR0ejziYmJyszMVPfu3b0e53zk5eWdvfNU8K2SK9LnMQAAAABcZJwyqXqdpJq73ta9S25bUfdvpd5jLlFIZOB7J6rKqnRs7d8ktd3va3vHkqgLFBQUpPT0dGVmZmrcuHHq06ePwsLC1KdPH40bN05ZWVlaunSp12KNJA0cOFA7d+7Uyy+/rGHDhqlLly7q0KGDLr/8cj399NPavXt3s8UaSUpLS9OOHTuUlpamAQMGKCIiQt26dVNycrLeeOMNbdq0yS/FGgAAAAAA4DsXbYcNfI8OGwAAAAA+1846bHrd1teaDpvvs/Mktd3va3tHhw0AAAAAAIBlKNgAAAAAAABYJvB9WAAAAAAAXCzcrpqvQLMhB3hFhw0AAAAAAIBlKNgAAAAAAABYhiVRAAAAAACY4nbJsWE5kg05wCs6bAAAAAAAACxDhw0AAAAAAIY4jh0dNo4T+BzgHQUbAADOgyvICXQKsJwNv4wDAIC2iyVRAAAAAAAAlqHDBgAAAAAAQxy3S4478L0TdILaL/DvEgAAAAAAANRDwQYAAAAAAMAyLIkCAAAAAMAUt6vmK9BsyAFe0WEDAAAAAABgGTpsAAB+FRTiNhjMXKzgsGpjsSTJFWIunulblpu86KFTFWwslrvK7OdiJs/N6GvGJ8AAgIsUBRsAAAAAAAypuUtU4IvRNuQA71gSBQAAAAAAYBkKNgAAAAAAAJZhSRQAAAAAAIY4jiVLopzA5wDv6LABAAAAAACwDAUbAAAAAAAAy7AkCgAAAAAAQ7hLFFqKgg0AWMAV5JiLFVJtLJYkBUdUGYsV1qnMWKzwrqXGYklSqMFzCwoz+x5xqsw1/FYWhxuLVV4QZSyWJFWeijAWq6o0zFgsd4XZX1f5AwYAYAuWRAEAAAAAAFiGDhsAAAAAAExxB9V8BZoNOcArXiEAAAAAAADLULABAAAAAACwDEuiAAAAAAAwhLtEoaXosAEAAAAAALAMHTYA0IT2eqvt0OhyY7EkKaLHaWOxOl123FisrkP+ZiyWJA3r2c1YrH6RnYzFkqTCSnO3LN/8wwFjsU581dNYLEkq2t/DWKzSY12MxTJ5u3LJ7G3E+XQbAOANBRsAAAAAAAxhSRRaiiVRAAAAAAAAlqHDBgAAAAAAQxzHju4Wx9zqf5wnOmwAAAAAAAAsQ8EGAAAAAADAMiyJAgAAAADAFEsuOiwbcoBXdNgAAAAAAABYhg4bAGiCK8jcldiCw6qNxQrrUmYsliR1vPSEsVhX3HjcWKy5V95qLJYkJXYcaSyWuyreWCxJcgWZe4/83b3JWKw5nT8zFkuS1gf93Vgsd6W5XyHdFcHGYkmSU2UunhWfsAMArEXBBgAAAAAAU9xBNV+BZkMO8IpXCAAAAAAAwDIUbAAAAAAAACzDkigAAAAAAAxxLLlLlA05wDs6bAAAAAAAACxDwQYAAAAAAMAyLIkCAAu4Qszd1js4otJYLEmK7HHaWKybuvczFmt45x8biyVJ5adTzMXqFGssliSFFZUbi9Wzg7FQur1nnrlgkv7a6wtjsUIOmnuPBIW4jcWqCWgunivI3HIElj4A9nAclxwn8D+TNuQA7+iwAQAAAAAAsAwFGwAAAAAAAMuwJAoAAAAAAEMcx5K7RLEkynp02AAAAAAAAFiGgg0AAAAAAIBlWBIFAAAAAIApblfNV6DZkAO8osMGAAAAAADAMnTYAIAFHLe5+rlTZbZWX1kcbizWdyWFxmKVOXnGYklSaNheY7EiTlcYiyVJrtB8Y7GCQ78zFmt/8UljsSSzP2vuCnO/QtpwYU5/ac/nBgC4cBRsAAAAAAAwxHG7jH5Y5y0P2C3w7xIAAAAAAADUQ8EGAAAAAADAMiyJAgAAAADAkJolUYFfjmRDDvCODhsAAAAAAADL0GEDAAAAAIAhjmNJh40T+BzgHQUbAGiCyf9I3RXBxmKVF3YwFkuSinO7GYu1sdPfjMVKq84yFkuSxvc5aCzWwOiuxmJJ0t+LS4zF+vgbc7f1/uTACWOxJOnU/n7GYpUXmJtHqs+EGoslSU6VufkYAABvWBIFAAAAAABgGTpsAAAAAAAwxe2q+Qo0G3KAV3TYAAAAAAAAWIaCDQAAAAAAgGVYEgUAAAAAgCGO25K7RFmQA7yjwwYAAAAAAMAydNgAQBPM3tbb3HRcVRxuLJYkFR+JMRarqizMWKz1uaeMxZKknO65xmKFdNhvLJZk9rb2Z05EG4tV9v3lxmJJ0pkfzJ1b5akIY7FMzo8SnzgDAOxBwQYAAAAAAEMcd5Acd+AXu9iQA7zjFQIAAAAAALAMBRsAAAAAAADLsCQKAAAAAABTLLlLlGzIAV7RYQMAAAAAAGAZCjYAAAAAAACWYUkUAAAAAACGOI7LiuVIjhP4HOAdBRsAsIDJdczVZ0KNxZIkd5W5Zs7q0jBjscq+72QsliQFR1QZi+UKchuLJZm9rai7IthYrOoKs79mmTw3t8Fzs+I6DwAABABLogAAAAAAACxDhw0AAAAAAKa4Jbks6B4021CL80CHDQAAAAAAgGUo2AAAAAAAAFiGJVEAAAAAABjiuF1WLIniou72o8MGAAAAAADAMnTYAMBFxvSnKY7J2/9Wmbutscvw7dErTxkMZvi23jJ4W2+TjP+s8UkpAADtCgUbAAAAAAAMYUkUWqp9fqQFAAAAAADQhtFhAwAAAACAIY4TZMVyYMcJfA7wjlcIAAAAAADAMhRsAAAAAAAALMOSKAAAAAAATHG7JFlwwV8uOmw9OmwAAAAAAAAsQ4cNAKDdMHl7yvZ9K0w+zwEAAAg0CjYAAAAAABjiWLIkqn1/+NQ+8BEaAAAAAACAZSjYAAAAAAAAWIYlUQAAAAAAGMKSKLQUHTYAAAAAAACWoWADAAAAAABgGZZEAQAAAABgCEui0FJ02AAAAAAAAFiGgg0AAAAAAPCrw4cPa8aMGRo8eLCioqIUExOjxMREvfLKKyotLQ10elZiSRQAAAAAAKY4LsltQe+EY25JVGZmph588EEVFRV5HistLdW2bdu0bds2LV26VFlZWRowYICxnNoCC94lAAAAAACgPdq1a5fuu+8+FRUVKTo6WvPmzdPmzZu1bt06paWlSZK+/vpr3XnnnSouLg5wtnahwwYAAAAAAPjF9OnTVVpaqpCQEK1du1Y33HCD57lbbrlFgwYN0qxZs7Rv3z4tXLhQc+bMCWC2dqHDBgAAAAAAQxy3y5ovf9u2bZvWr18vSZo6dWq9Yk2tZ555RoMHD5YkLVq0SJWVlX7Pq62gYAMAAAAAAHzuww8/9Gw/9NBDjY4JCgrS5MmTJUkFBQWeAg8o2AAAAAAAAD/YsGGDJCkqKkrXXXddk+NGjRrl2d64caPf82oruIYNAAAAAACmuF1yXObu0NQkA3eJ2rt3ryRp4MCBCglpuvxwxRVXNNgHFGzgQ1VVVWf/4ZwJXCIAAAAA2o86f1vU+5ujzSqXnEDnIEnlnq1jx441O7pv376tOvqZM2d04sSJFu3btWtXRUVFqaSkREeOHGlVnPaMgg185vjx42f/4d4UuEQAAAAAtEvHjx9XfHx8oNO4MNX2LflJTExsdozjtK7KdPr0ac92dHR0s+NrCzbc2vssrmEDn/n73/8e6BQAAAAAABY4c+ZsZ1RYWFiz48PDwyVJZWVlfsupraHDBj5Td93h5s2b1a9fvwBmA0m65ZZbJEl//vOfA5yJf7WF8wx0jibj+yuWL4/ri2Od7zGOHTvm+RRr69at6t2793nnAN8I9M+nKW3hPAOdI3Ol74/FXNl+BPLns6qqytPNP3ToUOPxfaFXr17WLvU5duyYYmNjvV5j5nxERER4tisqKpodX15es0QrMjLSp3m0ZRRs4DN1fyD79evX6jWO8L3Q0FBJrV9v2ta0hfMMdI4m4/srli+P64tj+eIYvXv3tvp9e7EI9M+nKW3hPAOdI3Ol74/FXNl+BPrns60vgwoJCbH2feyvvDp27OjZbskyp5KSEkktWz51sWBJFAAAAAAA8KmIiAh1795dkpSXl+d1bEFBgadgw0qNsyjYAAAAAAAAnxs8eLAk6eDBg17v8LVv374G+4CCDQAAAAAA8IPk5GRJNcudduzY0eS4v/zlL57tpKQkv+fVVric1t6bC2hCXl6ep33tyJEj1q7RBIBAYq4EgOYxVwLtw9atWzV8+HBJ0mOPPabFixc3GON2uzVkyBDt3btXXbp0UX5+vueaSRc7OmwAAAAAAIDPJSYmauTIkZKk9PR0bdmypcGYBQsWaO/evZKkp556imJNHdwlCgAAAAAA+MWrr76qpKQklZWVacyYMZo9e7ZGjx6tsrIyvffee1qyZIkkKSEhQc8880yAs7ULBRsAAAAAAOAX1157rVatWqWJEyfq1KlTmj17doMxCQkJyszMrHcrcHANGwAAAAAA4GeHDh3Sq6++qszMTOXl5SksLEwDBw7UvffeqyeeeEIdOnQIdIrWoWADAAAAAABgGS46DAAAAAAAYBkKNgAAAAAAAJahYAMAAAAAAGAZCjYAAAAAAACWoWADAAAAAABgGQo2AAAAAAAAlqFgA2u8/fbbeuyxxzRs2DCFh4fL5XIpIyMj0GkBgDX+9re/adGiRRozZozi4uIUFhamXr166ac//an++te/Bjo9ALBCYWGhnnzySd1www3q1auXwsPDdckll+iWW27R6tWr5ThOoFMEgBZxOcxYsER8fLwOHTqk7t27KyoqSocOHdLy5cuVmpoa6NQAwArPPfecXn75ZV122WUaNWqUevTooQMHDujDDz+U4zh69913dd999wU6TQAIqIMHD+qaa67RiBEjNHDgQMXExCg/P19r1qxRfn6+0tLStGTJkkCnCQDNomADa2RnZ2vQoEHq37+/XnrpJT3//PMUbACgjj/96U+KjY3VyJEj6z2+YcMG3XrrrerYsaOOHj2q8PDwAGUIAIFXXV0tx3EUEhJS7/HTp09rxIgR+uqrr7Rnzx5dddVVAcoQAFqGJVGwxm233ab+/fsHOg0AsNY999zToFgjSSNHjtTo0aN18uRJffnllwHIDADsERwc3KBYI0kdO3bU7bffLqmmCwcAbEfBBsrPz9dHH32kOXPm6I477lD37t3lcrnkcrla3d1y+PBhzZgxQ4MHD1ZUVJRiYmKUmJioV155RaWlpf45AQAwwPa5MjQ0VJIa/SMFAEyxea48c+aM/vznP8vlcunKK69s9f4AYBq/1UE9e/b0yXEyMzP14IMPqqioyPNYaWmptm3bpm3btmnp0qXKysrSgAEDfBIPAEyyea48fPiwsrOz1atXLw0dOtQneQLA+bBpriwsLNSiRYvkdruVn5+vrKwsHTlyRC+88IIGDRrkkzwBwJ/osEE9/fr105gxY1q9365du3TfffepqKhI0dHRmjdvnjZv3qx169YpLS1NkvT111/rzjvvVHFxsa/TBgCjbJorKysrNWnSJJWXl2v+/PkKDg5udV4A4A+BnisLCws1d+5cvfjii3rzzTf1/fff69///d/1wgsvnPc5AYBJdNhAc+bM0fXXX6/rr79ePXv2VG5uri699NJWHWP69OkqLS1VSEiI1q5dqxtuuMHz3C233KJBgwZp1qxZ2rdvnxYuXKg5c+b4+jQAwK9snCvdbrcefvhhffbZZ0pLS9OkSZPO69wAwFdsmivj4+PlOI6qq6t15MgRvffee/rnf/5nbd68We+//z5LSAHYzwHO8d133zmSHEnOlClTmh2/detWz/jHHnus0THV1dXO4MGDHUlO165dnYqKCq/H/O1vf+tIcpYvX34eZwAA/hfoudLtdjsPP/ywI8mZOHGiU11dfb6nAgB+E+i58lzz5893JDmvv/56i/cBgEBhSRQu2IcffujZfuihhxodExQUpMmTJ0uSCgoKtH79egOZAYA9fDlXut1uTZ06VcuWLdPPf/5zZWRkKCiI/9IBtH3+/r2ydokWv4sCaAv47Q4XbMOGDZKkqKgoXXfddU2OGzVqlGd748aNfs8LAGziq7nS7XbrkUce0fLlyzVhwgStXLmS69YAaDf8/Xvl0aNHJXFHPQBtAwUbXLC9e/dKkgYOHOj1P78rrriiwT4AcLHwxVxZ21mzfPly3XvvvXr77bcp1gBoV3wxV37xxRf17i5V6+TJk5o9e7Yk6Y477vBFugDgV5SWcUHOnDmjEydOSJL69u3rdWzXrl0VFRWlkpISHTlypMHzS5cu9XxC8uWXX3oeq21ZHT9+vMaPH++75AHAEF/Nlb/+9a+VkZGh6OhoJSQk6De/+U2D/cePH69rrrnGZ7kDgCm+miszMjK0dOlSjR49Wv3791dUVJQOHTqkzMxMFRcX66c//akeeOABv50HAPgKBRtckNOnT3u2o6Ojmx1f+x9rY7dg3Lhxo1asWFHvsU2bNmnTpk2Saq70T8EGQFvkq7kyNzdXklRcXKx58+Y1um98fDwFGwBtkq/myp/97GcqKipSTk6OPvvsM5WWliomJkbJycmaPHmy7r//frlcLp/nDwC+RsEGF+TMmTOe7bCwsGbHh4eHS5LKysoaPJeRkaGMjAyf5QYAtvDVXMk8CaA989VcmZycrOTkZN8mBwABwDVscEEiIiI82xUVFc2OLy8vlyRFRkb6LScAsA1zJQA0j7kSAOqjYIML0rFjR892Y8uczlVSUiKpZW2uANBeMFcCQPOYKwGgPgo2uCARERHq3r27JCkvL8/r2IKCAs9/rP369fN7bgBgC+ZKAGgecyUA1EfBBhds8ODBkqSDBw+qqqqqyXH79u1rsA8AXCyYKwGgecyVAHAWBRtcsNqLupWUlGjHjh1NjvvLX/7i2U5KSvJ7XgBgE+ZKAGgecyUAnEXBBhes7q22ly9f3ugYt9utt956S5LUpUsXjR492kRqAGAN5koAaB5zJQCcRcEGFywxMVEjR46UJKWnp2vLli0NxixYsEB79+6VJD311FMKDQ01miMABBpzJQA0j7kSAM5yOY7jBDoJBNbGjRt18OBBz79PnDihmTNnSqppMX3kkUfqjU9NTW1wjJ07dyopKUllZWWKjo7W7NmzNXr0aJWVlem9997TkiVLJEkJCQnavn17vbsAAEBbwFwJAM1jrgQA36FgA6WmpmrFihUtHt/UW2bNmjWaOHGiTp061ejzCQkJyszM1MCBA88rTwAIJOZKAGgecyUA+A5LouAzKSkp2r17t55++mklJCSoQ4cO6tKli4YNG6aXX35ZO3fu5D9VABc95koAaB5zJQDQYQMAAAAAAGAdOmwAAAAAAAAsQ8EGAAAAAADAMhRsAAAAAAAALEPBBgAAAAAAwDIUbAAAAAAAACxDwQYAAAAAAMAyFGwAAAAAAAAsQ8EGAAAAAADAMhRsAAAAAAAALEPBBgAAAAAAwDIUbAAAAAAAACxDwQYAAAAAAMAyFGwAAAAAAAAsQ8EGAAAAAADAMhRsAAAAAAAALEPBBgAAAAAAwDIUbAAAAAAAACxDwQYAgAvkcrnkcrn0q1/9KtCpwA8OHDig8PBwhYeH6/Dhw4FO54Jt3bpVLpdLMTEx+uGHHwKdDgAAaAIFGwDARWP9+vWe4krdr5CQEMXExOjSSy/VTTfdpKefflqrV69WRUVFoFOGBZ555hlVVFTooYceUlxcXKDTuWCJiYm6/fbbVVBQQJERAACLUbABAFz0qqurVVBQoNzcXG3YsEGLFi3Sz372M/Xt21e/+c1vVFVVFegU25z20nWUk5OjNWvWKDQ0VLNnzw50Oj4zZ84cSdKSJUt06NChAGcDAAAaExLoBAAACIRp06bp8ccf9/y7uLhYBQUF2r17t9atW6fs7GwdP35c//qv/6o1a9boo48+UmxsbKPHchzHVNow7MUXX5Qk3Xvvve2iu6bWjTfeqBEjRignJ0fz58/Xf/zHfwQ6JQAAcA46bAAAF6UePXpoyJAhnq8RI0bojjvu0LPPPqu1a9fqyy+/1LXXXiup5pof99xzD0ukLjL79+/X//zP/0iSJk6cGOBsfO+BBx6QJK1YsUKFhYWBTQYAADRAwQYAgEZcddVV2rRpk6dos3HjRr3++usBzgomLVu2TI7jqEePHvrJT34S6HR8bsKECQoJCVFJSYlWrVoV6HQAAMA5KNgAANCEyMhIrVy5Ui6XS5L0yiuvqLKyssG45q7X8u2332rBggVKSUlRfHy8IiMjFRkZqf79+2vChAn63//9X695ZGRkeGLk5uaqoqJCCxcu1LBhw9S5c2fFxMTo5ptvVmZmZr39Tp8+rfnz5+vaa69Vp06d1KVLF/3kJz/RunXrWnT+eXl5ev755/XjH/9YXbt2VUREhOLi4jRhwgR9+umnje4THx/v+X5J0ty5cxtc5Dk1NdVn8SQpNzfXc+yMjAxJ0p/+9CeNHTtWffr0UUhIiG6++eYWnXNd77//viRp3LhxCglpehV57TnXnte+ffuUlpam+Ph4hYeHq2fPnrr77ruVk5PT5DHqXhB7/fr1chxH6enpSk5OVrdu3dSpUyclJiZq5cqV9farqKjQ4sWLNWLECMXExKhjx45KSkry5O5Njx49lJycLEkUbAAAsJEDAMBF4tNPP3UkOZKcF154ocX7jRkzxrPfpk2bGjzv7Zjffvut53lvXxMnTnQqKysbjb98+XLPuF27djnDhw9v8jgLFixwHMdxDh065Fx11VWNjnG5XM7KlSu9nvPSpUudyMhIrzlPnTq1Qc79+/dv9lynTJnis3iO4zjfffedZ8yyZcucSZMmNdh31KhRXs/3XLm5uZ5909PTvY6tPecpU6Y4q1evdjp06NBo/sHBwc57773X6DHqvjfXrl3rpKSkNPl9ePLJJx3HcZyTJ086N910U5Pj5s2b1+x5Pvfcc44kJyIiwikvL2/V9wgAAPgXHTYAADTjtttu82xv2LChVftWV1crLCxMKSkp+t3vfqfs7Gx9/vnnys7O1uuvv66rrrpKkvT22297LnDrzaOPPqodO3bo8ccf1yeffKLt27dr6dKl6t27tyRp5syZ2rNnj+655x59++23eu6557R+/Xpt27ZNixYtUufOneU4jh5//HHl5+c3GmPZsmV65JFHVFZWpiFDhuj3v/+9Nm7cqM8//1yrV6/W2LFjJUnp6el69tln6+1be/2fWtOmTdOXX35Z72vevHk+i3euRYsWaeXKlRo5cqT++Mc/avv27crOztakSZOa/d7WVfd1vv7661u0z+7du/Xggw+qZ8+eeu2115STk6MtW7boV7/6lSIiIlRdXa1HH31Ux48f93qc2gtdP/jgg8rMzNSOHTv07rvv6vLLL5ckz/soNTVVmzdv1rRp07R27Vrt2LFD6enp6tOnj6SaO0H93//9n9dYiYmJkqQzZ85o27ZtLTpPAABgSKArRgAAmHK+HTbZ2dme/R5++OEGz3s7ZnFxsXP06NEmj+12u53U1FRHkhMVFeUUFhY2GFO3w8blcjn/+Z//2WDM7t27neDgYEeSExsb64SHhzs5OTkNxmVmZnqOtXDhwgbPHz582NMhMmXKlCa7fmbPnu1IcoKCgpyvv/66wfMt/T77Il7dDhtJzuTJkx232+01bnOmTZvmSHLCwsKcqqoqr2PrdhVdd911jb6Gb7/9ttfve933piRn0aJFDcYcO3bM6dSpk+c1buq9sGvXLicoKKheN05TDh065Ik5f/58r2MBAIBZdNgAANCMbt26ebYLCgpatW9UVJSn+6UxLpdLCxYsUHBwsEpKSpSdne31ePfdd5/Gjx/f4PGhQ4d6rkdy/PhxPf300xo+fHiDcWPHjlX//v0lNd4t9Oqrr6q0tFR9+vTR4sWLm7x2y9y5c3XJJZfI7Xbrrbfe8pqzN76O16VLF7322mv1rqNzPvLy8iTVvPbBwcEt3m/ZsmXq3Llzg8cfeOABT+dLc11aw4cP11NPPdXg8V69eunuu++WVPMaT5gwodH3wtVXX+15LzQXq2fPnp7t2nMGAAB2oGADAEAzoqOjPdunT5++oGNVVlYqLy9Pe/fu1Z49e7Rnzx4dPXrUUxTatWuX1/3vv//+Jp+7+uqrPdsTJkxodty3337b4Ln/+q//kiSlpKQoIiKiyWOEhITohhtukCRt2bLFa87e+DpeSkqKOnbseN751KpdttS1a9cW7zN06NB6r0FdLpfLc8exxr7vdfniNf7Rj37Uoljh4eGKjIyUpGaXagEAALOavuUBAACQVL9I06lTp1bvX1lZqSVLlmjlypXauXOnKioqmhx74sQJr8dKSEho8rkuXbq0aty5xaeioiIdPHhQkvTmm2/qzTff9JpLre+//75F487lj3hNFUxa6+TJk5JaV7C54oorvD4fExMjqfminz9f48Z07dpVZWVl+uGHH5odCwAAzKFgAwBAM+oWUWr/6G6pkydPasyYMdqxY0eLxpeVlXl9vkOHDk0+FxQU1Kpx1dXV9R5v6iLEzSktLT2v/fwRrzUFFm9qu32aez3q8vY9l5r+vrfmOK19jd1ut9dY0tlzrO20AQAAdqBgAwBAM3bu3OnZrr1TT0s99dRTnmLN+PHj9fDDD+vqq69Wjx49FBER4bnWSlxcnI4cOSLHcXyXeCvVLSRMnz5dU6dObdF+YWFh1sRrzfVmvImNjZV0ttOmvXK73SoqKpJ09pwBAIAdKNgAANCMTz75xLNdezHXljh16pRWrVolqeais++8806TY1t7MWN/qHtx5dLSUg0ZMqRdxWuN2uKFDa+LPxUVFXm6cCjYAABgFy46DACAF3v27NG6deskSf369dOwYcNavO+BAwdUWVkpyfuFZL/++msVFxdfWKI+EBsbq0suuUSSlJ2d7fduH9PxWmPo0KGSagoa57t0qy3Yv3+/Z7v2nAEAgB0o2AAA0ISysjJNnjzZU0iYMWNGk7edbkxVVZVn29t1VxYvXnz+SfrYP/7jP0qqubvQBx98cN7Hqb0GTHl5uZF4vjZy5EjP9rZt2wKYiX/VPbe65wwAAAKPgg0AAI346quvlJyc7Ll+zahRozRt2rRWHWPgwIGea9S89dZbjY756KOP9Pvf//7CkvWhmTNnKjw8XJL0i1/8Qtu3b/c6PisrS7t3727weO/evSVJ33zzjZF4vpaYmOjJa+vWrX6PFyi15xYfH6++ffsGOBsAAFAX17ABAFyU8vPztWfPHs+/S0pKVFBQoN27d2vdunX65JNPPJ01I0aM0AcffKDQ0NBWxejWrZvGjh2rzMxMZWVl6R/+4R/02GOPKS4uTvn5+Vq9erUyMjI0YMAAFRYW6vjx4z49x/Nx6aWXavHixXrooYd08uRJJSUladKkSbrrrrsUFxenqqoq5eXlaevWrfrggw/0zTffaM2aNQ1up33jjTfqu+++03//93/rzTffVFJSkqfrplOnTurRo4dP4/laeHi4br31VmVlZWndunWaO3euX+MFguM4+vTTTyVJd955Z4CzAQAA56JgAwC4KL3xxht64403vI6JjY3V9OnTNWvWrFYthTo3TnJysg4fPqyPP/5YH3/8cb3n4+Li9OGHH2rs2LHndXx/SE1NVWRkpB599FGdOnVK6enpSk9Pb3RsUFCQoqKiGjw+Y8YMffDBByovL9cvfvGLes9NmTJFGRkZPo3nD5MmTVJWVpY2b96s3NxcxcfHG4lrymeffaa8vDxJ0sSJEwOcDQAAOBdLogAAF72goCB17txZcXFxGjlypKZPn67Vq1crLy9Ps2fPPu9ijVRzoeLPP/9cM2fOVEJCgsLDw9W5c2f96Ec/0gsvvKAvvvhCV155pQ/PxjcmTJig3NxcvfTSS7r55pvVo0cPhYaGqkOHDhowYIBSUlK0cOFC5ebmavTo0Q32v+aaa7Rlyxb9/Oc/V1xcnGd5kb/i+cM999yjXr16yXEcvfvuu0ZimvTHP/5RknTttddqxIgRAc4GAACcy+XYdEsGAAAAi7z00kt6/vnnNWjQIO3bt09BQe3js67Tp08rLi5OhYWFeuedd/TAAw8EOiUAAHCO9vFbBwAAgB888cQTio2N1YEDB7Rq1apAp+Mzr732mgoLCzV48GCvt5wHAACBQ8EGAACgCdHR0Z4LDr/44otyu90BzujClZSUaOHChZKk+fPnt5uuIQAA2hsuOgwAAODFo48+qsLCQpWXl+vo0aNt/vbXhw4d0j/90z8pJiZGd911V6DTAQAATeAaNgAAAAAAAJahBxYAAAAAAMAyFGwAAAAAAAAsQ8EGAAAAAADAMhRsAAAAAAAALEPBBgAAAAAAwDIUbAAAAAAAACxDwQYAAAAAAMAyFGwAAAAAAAAsQ8EGAAAAAADAMhRsAAAAAAAALEPBBgAAAAAAwDIUbAAAAAAAACxDwQYAAAAAAMAyFGwAAAAAAAAsQ8EGAAAAAADAMhRsAAAAAAAALEPBBgAAAAAAwDIUbAAAAAAAACxDwQYAAAAAAMAyFGwAAAAAAAAs8/8Th9Q142696QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sd.plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### hygroscopic growth and optical properties" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The difference to hygroscopic growth and optical properties of the SizeDist instance is that you can let the RH and refractive index change over time.\n", "\n", "**GOTCHA** you can loose particles when applying growth!!! See help of `sd.grow_sizedistribution` function! There are functions that extrapolate size distributions assuming normal distributions. Consider using those." ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "execution": { "iopub.execute_input": "2023-11-28T22:17:55.512317Z", "iopub.status.busy": "2023-11-28T22:17:55.511978Z", "iopub.status.idle": "2023-11-28T22:17:55.521024Z", "shell.execute_reply": "2023-11-28T22:17:55.520381Z", "shell.execute_reply.started": "2023-11-28T22:17:55.512285Z" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "reload(atmsd.hygroscopicity)\n", "reload(atmsd.optical_properties)\n", "reload(atmsd)" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "execution": { "iopub.execute_input": "2023-11-28T22:17:55.735230Z", "iopub.status.busy": "2023-11-28T22:17:55.734695Z", "iopub.status.idle": "2023-11-28T22:17:55.740500Z", "shell.execute_reply": "2023-11-28T22:17:55.739510Z", "shell.execute_reply.started": "2023-11-28T22:17:55.735193Z" } }, "outputs": [], "source": [ "sd = atmsd.SizeDist_LS(sd.data, sd.bins, sd.distributionType, sd.layerbounderies)" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "execution": { "iopub.execute_input": "2023-11-28T22:17:55.977255Z", "iopub.status.busy": "2023-11-28T22:17:55.976374Z", "iopub.status.idle": "2023-11-28T22:17:55.983611Z", "shell.execute_reply": "2023-11-28T22:17:55.982673Z", "shell.execute_reply.started": "2023-11-28T22:17:55.977179Z" } }, "outputs": [], "source": [ "sd.optical_properties.parameters.refractive_index = 1.5\n", "sd.optical_properties.parameters.wavelength = 500" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "execution": { "iopub.execute_input": "2023-11-28T22:17:56.202399Z", "iopub.status.busy": "2023-11-28T22:17:56.201074Z", "iopub.status.idle": "2023-11-28T22:17:56.216822Z", "shell.execute_reply": "2023-11-28T22:17:56.215967Z", "shell.execute_reply.started": "2023-11-28T22:17:56.202321Z" } }, "outputs": [ { "data": { "text/plain": [ "(50, 1)" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rh = pd.DataFrame(index = sd.data.index, columns=['RH'], dtype=float)\n", "rh.RH.iloc[[0,-1]] = [0,95]\n", "rh = rh.interpolate()\n", "rh.shape" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "execution": { "iopub.execute_input": "2023-11-28T22:17:56.424664Z", "iopub.status.busy": "2023-11-28T22:17:56.423849Z", "iopub.status.idle": "2023-11-28T22:17:56.433292Z", "shell.execute_reply": "2023-11-28T22:17:56.431517Z", "shell.execute_reply.started": "2023-11-28T22:17:56.424585Z" } }, "outputs": [], "source": [ "sd.hygroscopicity.parameters.kappa = 1.5\n", "sd.hygroscopicity.parameters.RH = rh" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "execution": { "iopub.execute_input": "2023-11-28T22:17:56.675082Z", "iopub.status.busy": "2023-11-28T22:17:56.674012Z", "iopub.status.idle": "2023-11-28T22:18:19.257903Z", "shell.execute_reply": "2023-11-28T22:18:19.256981Z", "shell.execute_reply.started": "2023-11-28T22:17:56.674976Z" } }, "outputs": [ { "data": { "text/plain": [ "(
,\n", " ,\n", " ,\n", " )" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABIgAAANkCAYAAADcDRG0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAB7CAAAewgFu0HU+AADH2klEQVR4nOzdeXhU5fn/8c8JIZCFLRLWgOwQKghKUjBIoNYqAYkEQdQqWGSpCmJZrN+fVqwLsljAuEBkt4CIAiooWjFsGoTQaEATJBELQfYdAgmTOb8/YsaETBZg5szAvF/Xda7rzDzPuZ97Rmydm2cxTNM0BQAAAAAAAJ/l5+kEAAAAAAAA4FkUiAAAAAAAAHwcBSIAAAAAAAAfR4EIAAAAAADAx1EgAgAAAAAA8HEUiAAAAAAAAHwcBSIAAAAAAAAfR4EIAAAAAADAx1EgAgAAAAAA8HEUiAAAAAAAAHwcBSIAAAAAAAAfR4EIAAAAAADAx1EgAgAAAAAA8HEUiAAAAAAAAHwcBSIAAAAAAAAfR4EIAAAAAADAx1EgAgAAAAAA8HH+nk4A147z589r+/btkqSwsDD5+/PHCwAAAMCVsdlsOnz4sCSpXbt2qlq1qoczunQ2m00HDhzwdBqlqlevHr/fQIEIrrN9+3ZFRUV5Og0AAAAA16gtW7YoMjLS02lcsgMHDqhRo0aeTqNUe/fuVXh4uKfTgIexxAwAAAAAAMDHMYMILhMWFvbbC79oybj6pn4CAAAA8DLmecn+laSLfnNcpZZt2aKw+vU9nYYO79+v/hatAMnLy9M777yjZcuW6bvvvtOxY8dUuXJlNWzYUNHR0Ro2bJg6d+5cbpw1a9YoMTFRW7Zs0eHDhxUWFqaoqCgNGzZMd955Z4VyycnJ0RtvvKFly5YpMzNTeXl5atSokXr16qVRo0apcePGV/pxr1qGaZqmp5PAtSE7O/u3aZOVbpOMQM8mBAAAAODqZ56T8tdKunqXQhX9rbRu717V84LPcCA7W91/zcmd3+vevXvVq1cvx361pXnyySf16quvyjCMEm2maWrEiBFKTEws9flhw4Zp5syZTp8vlJWVpV69emnnzp1O22vUqKHFixcrNja2zFyvVSwxAwAAAADAKqbpPZeb2Wy2YsWh9u3ba/78+UpOTtbnn3+uf/zjHwoODpYkTZs2TVOnTnUa55lnnnEUhzp27KglS5Zoy5YtWrJkiTp27ChJSkxM1LPPPltqLmfOnFHv3r0dxaGhQ4dq7dq1+vrrr/XSSy8pJCREJ0+eVP/+/ZWWluay7+BqwgwiuAwziAAAAAC43LU2g2jPHu+ZQfTrcip3fa8ffPCB7rnnHklSly5dtHHjRlWqVKlYn23btqlLly66cOGCatWqpUOHDhU7US0zM1MRERGy2Wzq1KmTNmzYoMDA335r5uTkKCYmRikpKfL391dGRoaaN29eIpcJEybo+eeflyRNnjxZ48aNK9aenJysbt26yWazqUePHvryyy9d9j1cLZhBBAAAAAAAXO6rr75y3D/99NMlikOSdPPNN6t3796SpOPHjysjI6NY+7Rp02Sz2SRJCQkJxYpDkhQUFKSEhARJBTOWpk+fXmKMCxcuaMaMGZKkiIgIjRkzpkSfLl26aMiQIZKkpKQkbdu2raIf85pBgQgAAAAAAIsYpvdc7paXl+e4b9asWan9is74yc3NddybpqkPP/xQktSmTZtSN7Lu3LmzWrduLUlauXKlLl4otW7dOp04cUKSNGjQIPn5OS+FDB482HG/fPnyUvO9VlEgAgAAAAAALteqVSvH/U8//VRqv6ysLEmSYRhq2bKl4/3du3dr3759kqSYmJgyxypsz87O1s8//1ysbePGjSX6OdOpUyfHnkibNm0qc7xrEQUiAAAAAAB82P79+5WdnV3mdTnuu+8+Va9eXZI0adIk5efnl+iTmpqq1atXS5IGDhzo6C9J6enpjvs2bdqUOVbR9qLPXUocf39/x2ymi2P4Av/yuwAAAAAAAJewmwWXpxXJISoqqtzul3O+VVhYmObPn68HHnhAX331lSIjIzV69Gi1atVKZ86c0VdffaVXX31VeXl56tChg/71r38Ve37v3r2O+/I20XYcmHTRc0VfBwcHq2bNmuXGSUtL0+HDh5Wbm6sqVapU5KNeEygQAQAAAAAAt+jbt69SUlL0r3/9S3PnztWgQYOKtdetW1fPP/+8hg0b5ljeVej06dOO+5CQkDLHKfrsmTNnnMYpL4azOBSIAAAAAACAT9iyZYvq16/vltgXLlzQ4sWL9fHHHzudhXTw4EEtWbJErVq1Uq9evYq1nT9/3nEfEBBQ5jhFCznnzp1zGqe8GOXFudZRIAIAAAAAwCJWnSBWkTwK1a9fv9wlXJfj7Nmzio2N1YYNG1SpUiWNHz9eDz/8sJo1a6bz58/rm2++0T//+U9t2rRJd911l6ZNm6YnnnjC8XzVqlUd90VPRHOm6OlngYGBxdoK45QXo7w41zo2qQYAAAAAAC733HPPacOGDZKkOXPmaNKkSWrTpo0CAgJUvXp13X777UpKSlKPHj1kmqb+9re/KS0tzfF8tWrVHPcXLxu72NmzZx33Fy8lK4xTXozy4lzrKBABAAAAAACXMk1T8+bNk1Rw3P3Few8V8vf31wsvvCBJstvtjmek4htTl3eSWtGNqYtuWF00ztmzZ3XixIkKxQkLC/Op/YckCkQAAAAAAFjHNL3ncqODBw/q2LFjkqSOHTuW2ffmm2923GdkZDju27Zt6/R9Z4q2R0REFGuraBybzaasrCynMXwBBSIAAAAAAOBS/v6/bXlss9nK7HvhwgWnzzVt2lQNGjSQJK1fv77MGIVL2Ro2bKgmTZoUa+vatavjvqw4KSkpjiVm0dHRZY53LaJABAAAAAAAXCo0NFTVq1eXJCUnJ5dZJCpatGnatKnj3jAMxcXFSSqY+bN582anz2/evNkxMyguLk6GYRRr7969u2rUqCFJWrBggdPT1CRp/vz5jvu+ffuWmu+1igIRAAAAAABWMX87ycyTl9x8kpqfn5/j2PpffvlFL730ktN+x48f11NPPeV43bt372Lto0ePdswqGjlyZImj58+dO6eRI0dKKph9NHr06BJjBAQEaNSoUZKk9PR0TZ06tUSf5ORkzZkzR5IUExOjyMjIinzMawoFIgAAAAAA4HL/+Mc/FBQUJEmaMGGC+vTpow8++ECpqalKTk7WtGnT1KFDB/3www+SpNtuu01/+tOfisVo1aqVxo4dK6lgCVh0dLSWLl2qlJQULV26VNHR0UpJSZEkjRs3Ti1btnSay7hx49SqVStJ0vjx4zV8+HAlJSVp8+bNmjhxov70pz/JZrMpMDBQ06dPd8fX4fUMs7S5VcAlys7O/m23+Eq3SUagZxMCAAAAcPUzz0n5ayUVnDBV9GSrq0XR30obMn9WfS/4DPuzs9WtRRNJ7v1ev/jiC9133306cuRImf3+8Ic/6P3331etWrVKtNntdg0dOlRz584t9fkhQ4YoMTFRfn6lz4PJzMxUbGysdu3a5bS9evXqWrRoUYlZTL6CGUQAAAAAAFjF0yeXWXSKWaE//vGPysjI0KRJk9S9e3eFhYWpcuXKCgwMVNOmTTVgwACtXLlSX3zxhdPikFSwXG3OnDlavXq14uLi1KBBAwUEBKhBgwaKi4vTJ598otmzZ5dZHJKkFi1aKDU1VZMmTVKnTp1Us2ZNBQUFqXXr1nryySeVlpbms8UhiRlEcCFmEAEAAABwuWttBtGu3d4zg6hlwYbQV+v3CtfyL78LAAAAAABwBcOUDLuns/h1o2qgCJaYAQAAAAAA+DgKRAAAAAAAAD6OJWYAAAAAAFjFwg2iy80DKIIZRAAAAAAAAD6OAhEAAAAAAICPY4kZAAAAAAAWMUzvOEHMG3KAd2EGEQAAAAAAgI+jQAQAAAAAAODjWGIGAAAAAIBVOMUMXooZRAAAAAAAAD6OAhEAAAAAAICPY4kZAAAAAABWMX+9PM0bcoBXYQYRAAAAAACAj6NABAAAAAAA4ONYYgYAAAAAgEUM05ThBSeIeUMO8C7MIAIAAAAAAPBxFIgAAAAAAAB8HEvMAAAAAACwiv3Xy9O8IQd4FWYQAQAAAAAA+DgKRAAAAAAAAD6OJWYAAAAAAFiEU8zgrZhBBAAAAAAA4OMoEAEAAAAAAPg4lpgBAAAAAGAlVnfBCzGDCAAAAAAAwMcxgwgAAAAAAIuwSTW8FTOIAAAAAAAAfBwFIgAAAAAAAB/HEjMAAAAAAKxiyjs2qfaGHOBVmEEEAAAAAADg4ygQAQAAAAAA+DiWmAEAAAAAYBHDLhl2z6/vMuyezgDehhlEAAAAAAAAPo4CEQAAAAAAgI9jiRkAAAAAAFbhFDN4KWYQAQAAAAAA+DgKRAAAAAAAAD6OJWYAAAAAAFjEME0ZpufXd3lDDvAuzCACAAAAAADwcRSIAAAAAAAAfBxLzAAAAAAAsAqnmMFLMYMIAAAAAADAx1EgAgAAAAAA8HEsMQMAAAAAwCqmWXB5mjfkAK/CDCIAAAAAAAAfR4EIAAAAAADAx7HEDAAAAAAAiximZNg9nUVBHkBRzCACAAAAAADwcRSIAAAAAAAAfBxLzAAAAAAAsAqnmMFLMYMIAAAAAADAxzGDCAAAAAAAq5heskG0N+QAr8IMIgAAAAAAAB9HgQgAAAAAAMDHscQMAAAAAACrsEk1vBQziAAAAAAAAHwcBSIAAAAAAAAfxxIzAAAAAAAsYnjJKWbekAO8CzOIAAAAAAAAfBwFIgAAAAAAAB/HEjMAAAAAAKxiNwsuT/OGHOBVmEEEAAAAAADg4ygQAQAAAAAA+DiWmAEAAAAAYBFOMYO3YgYRAAAAAACAj6NABAAAAAAA4ONYYgYAAAAAgGVMyfSG9V3ekAO8CTOIAAAAAAAAfBwFIgAAAAAA4FLdu3eXYRiXdK1bt67UeGvWrFF8fLzCw8NVpUoVhYeHKz4+XmvWrKlwTjk5OZoyZYqioqIUGhqqkJAQRUREaOzYsdqzZ48LPvXVjSVmAAAAAABYhFPMnPPz81PLli1LvG+apkaMGKHExMRi7+/bt08rVqzQihUrNGzYMM2cOVOGYZQaPysrS7169dLOnTuLvZ+RkaGMjAzNnj1bixcvVmxsrGs+0FWIAhEAAAAAAHCpefPm6ezZs2X2+eGHH3TvvfdKkm677TY1bNiwRJ9nnnnGURzq2LGjxo8fr+bNmysrK0uTJ09WamqqEhMTFRYWphdffNHpOGfOnFHv3r0dxaGhQ4dq4MCBCgwMVFJSkiZOnKiTJ0+qf//+Sk5OVvv27a/ko1+1KBABAAAAAACXatq0abl93nnnHcf9Qw89VKI9MzNTkydPliR16tRJGzZsUGBgoCQpMjJSffr0UUxMjFJSUjRp0iQ9/PDDat68eYk4U6dOVUZGhiRp8uTJGjdunKOtS5cu6tGjh7p166acnByNHj1aX3755aV92GsEexABAAAAAGAV0/Sey4PsdrsWLVokSQoJCVF8fHyJPtOmTZPNZpMkJSQkOIpDhYKCgpSQkCBJstlsmj59eokYFy5c0IwZMyRJERERGjNmTIk+Xbp00ZAhQyRJSUlJ2rZt2+V/sKsYBSIAAAAAAGCptWvXat++fZKke+65R0FBQcXaTdPUhx9+KElq06aNOnfu7DRO586d1bp1a0nSypUrZV5U+Fq3bp1OnDghSRo0aJD8/JyXQQYPHuy4X758+SV/nmsBBSIAAAAAAGCphQsXOu6dLS/bvXu3o4AUExNTZqzC9uzsbP3888/F2jZu3FiinzOdOnVScHCwJGnTpk1lJ3+NokAEAAAAAIBV7F50eciZM2e0YsUKSVLjxo3VvXv3En3S09Md923atCkzXtH2os9dShx/f3/H/kUXx/AVbFINAAAAAIAP279/f7l9wsPDXTbeBx984Djh7MEHH3R6PP3evXsrPHajRo2cPlf0dXBwsGrWrFlunLS0NB0+fFi5ubmqUqVKmf2vNRSIAAAAAACwiGGaMjy8QXRhHoWioqLK7X/x3j5XorzlZZJ0+vRpx31ISEiZ8QqXhkkFs5OcxSkvhrM4vlYgYokZAAAAAACwRHZ2ttatWyepYIPpVq1aOe13/vx5x31AQECZMYsWcs6dO+c0TnkxyovjC5hBBAAAAACAD9uyZYvq169vyVj//ve/ZbcXbIA0aNCgUvtVrVrVcZ+Xl1dmzNzcXMd9YGCg0zjlxSgvji+gQAQAAAAAgFXMXy9PK5JD/fr1XbrHUFneeecdSQWzde69995S+1WrVs1xf/GysYsV7mcklVxKVhinvBjlxfEFLDEDAAAAAABul5KSoh9++EGS1Lt3b9WqVavUvkULVtnZ2WXGLboxddENq4vGOXv2rE6cOFGhOGFhYT63/5BEgQgAAAAAAFig6ObUZS0vk6S2bds67jMyMsrsW7Q9IiLisuLYbDZlZWU5jeErKBABAAAAAGARw/ztJDPPXtZ+7gsXLujdd9+VVDBDp2fPnmX2b9q0qRo0aCBJWr9+fZl9N2zYIElq2LChmjRpUqyta9eujvuy4qSkpDiWmEVHR5c53rWKAhEAAAAAAHCrTz/9VIcPH5Yk3X///fL3L3tLZMMwFBcXJ6lg5s/mzZud9tu8ebNjZlBcXJwMwyjW3r17d9WoUUOStGDBApmm88rY/PnzHfd9+/Yt/wNdg3y2QGQYRoWu7t27lxtrzZo1io+PV3h4uKpUqaLw8HDFx8drzZo1Fc4nJydHU6ZMUVRUlEJDQxUSEqKIiAiNHTtWe/bsqXCc77//XiNGjFCLFi0UGBiosLAwdevWTbNmzZLNZqtwHAAAAAAAXKXo8rKHHnqoQs+MHj3aUUgaOXJkiaPnz507p5EjR0qS/P39NXr06BIxAgICNGrUKElSenq6pk6dWqJPcnKy5syZI0mKiYlRZGRkhfK71hhmaeWza9zFVcXSxMTEaN26dU7bTNPUiBEjlJiYWOrzw4YN08yZM8scLysrS7169dLOnTudtteoUUOLFy9WbGxsmbnOmTNHjz32WLGj+Yrq3LmzVq1apeuuu67MOJcrOzv7tw3BKt0mGb53LCAAAAAAFzPPSflrJRVsImzVaVuuVPS3UurnaWpQr4GHM5J+OfCLOv6pvST3f6/Hjx9X/fr1lZubqxtuuEHbt2+v8LNPP/20XnnlFUlSx44d9dRTT6l58+bKysrSpEmTlJqa6uj38ssvO41x+vRpderUST/++KOkgt/pAwcOVGBgoJKSkvTyyy/rzJkzCgwM1Ndff60OHTpc2Qe+Svn8Mfd//etf9eijj5baHhwcXGrbM8884ygOdezYUePHj3f8QZ08ebJSU1OVmJiosLAwvfjii05jnDlzRr1793YUh4YOHVrsD+rEiRN18uRJ9e/fX8nJyWrfvr3TOJ999pmGDRsmu92uunXr6v/9v/+n3//+9zp27JjefvttLV++XJs3b1Z8fLySkpLk5+ezk8cAAAAAABZaunSpYyJDRWcPFXrppZd06NAhzZ07V6mpqRo4cGCJPkOGDCn1N7dUcNT96tWrFRsbq127dikxMbHERI/q1atr0aJFPlsckphBpOeee04TJky45OczMzMVEREhm82mTp06acOGDQoM/G3GTE5OjmJiYpSSkiJ/f39lZGSoefPmJeJMmDBBzz//vCRp8uTJGjduXLH25ORkdevWTTabTT169NCXX35ZIobNZlNERIQyMzNVvXp1/fe//y0x1mOPPaY333xTUsG6y0v9l7IimEEEAAAAwOWYQeQWVs4gio6O1tdff61KlSppz549js2nL8Unn3yixMREbd26VUeOHFHt2rUVGRmp4cOHl7vhdaGzZ8/qjTfe0LJly5SZmam8vDw1atRIsbGxeuKJJ3T99ddfcl7XEgpEl1kgKlpwSU5OVufOnUv02bx5s7p06SJJevzxx5WQkFCs/cKFC6pTp45OnDihiIgI7dixw+nMnhEjRmjWrFmSCnZWv/nmm4u1L1u2TAMGDJAkTZw4UX//+99LxMjJyVF4eLiOHz9+yVP6KooCEQAAAKxm+PnkzxmXM+0V24LDI66xAtG3n3+nBnW9oEB08Bd1+NONkq7e7xWuxTqjy2Capj788ENJUps2bZwWh6SCPX9at24tSVq5cmWJ3dLXrVunEydOSJIGDRpU6rKvwYMHO+6XL19eon3lypVO+xYVFBTkKCLt2LFDu3btctoPAAAAAAD4HgpEl2H37t3at2+fpIJNrMtS2J6dna2ff/65WNvGjRtL9HOmU6dOjr2QNm3aVKK9ME7r1q1Vr169cnMpLQ4AAAAAAPBNPl8gWrZsmVq3bq3AwEBVq1ZNLVu21KBBg5SUlFTqM+np6Y77Nm3alBm/aHvR5y4ljr+/v2NPoYtjnDlzRtnZ2VecCwAAAADAAnYvuoAifP4Usx9++KHY68zMTGVmZmrhwoW6++67NX/+fNWoUaNYn7179zruy1un6diT56Lnir4ODg5WzZo1y42Tlpamw4cPKzc3V1WqVJFUMDOpcOnaleRSEYWFqNLs37//kmMCAAAAAADP89kCUVBQkPr06aPbbrtNbdq0UUhIiA4fPqz169dr5syZOnr0qFauXKm4uDj95z//UeXKlR3Pnj592nEfEhJS5jiFS8Okgtk+RRXGKS+GsziFBSJX5VIRRQtMAAAAAADg2uGzBaJ9+/Y5nbVz++23a+TIkerZs6dSU1O1fv16vfXWWxo1apSjz/nz5x33AQEBZY5TWMiRpHPnzhVrK4xTXoyy4rgqFwAAAACA+xmmKcMLDhP3hhzgXXy2QFTWkq66devq/fffV0REhPLy8pSQkFCsQFS1alXHfV5eXpnj5ObmOu4DA4sf+14Yp7wYZcVxVS4VUd6ytP379ysqKuqS4wIAAAAAAM/y2QJReZo1a6bbb79dq1evVmZmpn755Rc1aNBAklStWjVHv/KWap09e9Zxf/ESsMI4FVnuVVocV+VSEeXtcQQAAAAAAK5OPn+KWVnatm3ruC881l4qXigpb+PmorNuLt7DpzDO2bNndeLEiQrFCQsLK7ZUzFW5AAAAAAAsYHrRBRRBgagMZilrMosWjjIyMsqMUbQ9IiLisuLYbDZlZWU5jRESEuIo9lxJLgAAAAAAwHdRICrDDz/84LgvXF4mSU2bNnW8Xr9+fZkxNmzYIElq2LChmjRpUqyta9eujvuy4qSkpDiWh0VHR5doL4yzc+dOHThwoNQ4RcdwFgcAAAAAAPgmCkSl+Omnn/Sf//xHUsF+RA0bNnS0GYahuLg4SQWzcjZv3uw0xubNmx2zduLi4mQYRrH27t27q0aNGpKkBQsWlDpjaf78+Y77vn37lmi/++67nfYtKicnR++9956kgplLrVq1ctoPAAAAAOA+haeYecMFFOWTBaKPP/5YNput1PaDBw/qnnvu0YULFyRJjz32WIk+o0ePlr9/wR7fI0eOLHFs/Llz5zRy5EhJkr+/v0aPHl0iRkBAgON0tPT0dE2dOrVEn+TkZM2ZM0eSFBMTo8jIyBJ9+vbtq+bNm0uSJk6c6FiOVtS4ceN0/Phxxz0AAAAAAEAhnzzFbOTIkbpw4YL69eunLl26qEmTJgoMDNSRI0e0bt06zZw5U0ePHpVUsHzLWYGoVatWGjt2rF555RWlpKQoOjpaTz31lJo3b66srCxNmjRJqampkgoKMi1btnSay7hx47R06VL9+OOPGj9+vDIzMzVw4EAFBgYqKSlJL7/8smw2mwIDAzV9+nSnMSpXrqzXXntNd911l06dOqXo6Gg988wzioqK0vHjx/X222/rgw8+cHyeBx980AXfIgAAAADgknnLBtHekAO8imGWtq7pGtakSRP973//K7dfv379NHv2bNWsWdNpu91u19ChQzV37txSYwwZMkSJiYny8yt9slZmZqZiY2O1a9cup+3Vq1fXokWL1Lt37zLzffvtt/X4448rLy/PaXtUVJRWr16t2rVrlxnncmVnZ/92Olql2yQj0C3jAAAAAIUMP5/7OeMWpt0ov5OnmOek/LWSCk5mLnqS89Wi6G+ltFWpalC3QTlPuN8vB39R+94dJV293ytcyydnEC1YsEDr169XcnKyfvrpJx05ckSnTp1ynAh2yy23aNCgQerSpUuZcfz8/DRnzhz169dPiYmJ2rp1q44cOaLatWsrMjJSw4cPV8+ePcvNp0WLFkpNTdUbb7yhZcuWKTMzU3l5eWrUqJFiY2P1xBNP6Prrry83ztChQ9WlSxe99tprWrt2rX755RcFBwcrIiJCDzzwgB555BHHsjgAAAB4lpWFDcuLKH52y4a6lgtEVhZtDLu1u4/YbT652wng1XxyBhHcgxlEAAAAFUeByDUoELmINxeIrrUZRB/913tmEPW5SdLV+73CtSjbAgAAAAAA+DgKRAAAAAAAAD6ODWkAAAAAALCQce2ujMRVjBlEAAAAAAAAPo4CEQAAAAAAgI9jiRkAAAAAAFYxzYLL07whB3gVZhABAAAAAAD4OApEAAAAAAAAPo4lZgAAAAAAWMQwveMUM2/IAd6FGUQAAAAAAAA+jgIRAAAAAACAj2OJGQAAAAAAVuEUM3gpZhABAAAAAAD4OGYQAQAAAL/y87dbNpbhn2/ZWH4B1o0lSZUCbJaNZVj4z8xqps26v8/Pz7P2p6H9VFVLxwNQPgpEAAAAAABYxLAXXJ7mDTnAu7DEDAAAAAAAwMdRIAIAAAAAAPBxLDEDAAAAAMAqnGIGL8UMIgAAAAAAAB/HDCIAAAAAACximAWXp3lDDvAuzCACAAAAAADwcRSIAAAAAAAAfBxLzAAAAAAAsAqbVMNLMYMIAAAAAADAx1EgAgAAAAAA8HEsMQMAAAAAwCKGvOMEMcPTCcDrMIMIAAAAAADAx1EgAgAAAAAA8HEsMQMAAIDX8vO3WztegM2ysfxDci0bK6D6ecvGkqTK1c5ZNpZ/UJ5lY0mSabduYY4tJ8CysS6cDrRsLEm6cKqqpeN5FbskuxesMbP2f15xFWAGEQAAAAAAgI+jQAQAAAAAAODjWGIGAAAAAIBVzF8vT/OGHOBVmEEEAAAAAADg4ygQAQAAAAAA+DiWmAEAAAAAYBHDNGWYnl/f5Q05wLswgwgAAAAAAMDHUSACAAAAAADwcSwxAwAAAADAKpxiBi/FDCIAAAAAAAAfR4EIAAAAAADAx7HEDAAAAAAAi3CKGbwVM4gAAAAAAAB8HAUiAAAAAAAAH8cSMwAAAFwSP3+7ZWNVqnrBsrEkKaBmjmVjBdY9ZdlYIY2PWTaWJAVbOF7l6uctG0uSTJt1f8d+7lA1y8Y68/N1lo0lSad/qm3peF7F/uvlad6QA7wKM4gAAAAAAAB8HDOIAAAAAACwiCEv2aRans8B3oUZRAAAAAAAAD6OAhEAAAAAAICPY4kZAAAAAABWMX+9PM0bcoBXYQYRAAAAAACAj6NABAAAAAAA4ONYYgYAAAAAgEUM00tOMfOCHOBdmEEEAAAAAADc6siRI5o8ebKio6NVr149ValSRQ0aNNDvf/97jRs3TsnJyeXGWLNmjeLj4xUeHq4qVaooPDxc8fHxWrNmTYXzyMnJ0ZQpUxQVFaXQ0FCFhIQoIiJCY8eO1Z49e67kI171mEEEAAAAAADcZtmyZfrrX/+qo0ePFnt///792r9/v7Zs2aJdu3Zp5cqVTp83TVMjRoxQYmJisff37dunFStWaMWKFRo2bJhmzpwpwzBKzSMrK0u9evXSzp07i72fkZGhjIwMzZ49W4sXL1ZsbOzlfdCrHAUiAAAAAACs4mOnmC1cuFAPP/yw7Ha76tSpo7/+9a/q2rWrQkNDdeDAAWVlZenjjz9W5cqVS43xzDPPOIpDHTt21Pjx49W8eXNlZWVp8uTJSk1NVWJiosLCwvTiiy86jXHmzBn17t3bURwaOnSoBg4cqMDAQCUlJWnixIk6efKk+vfvr+TkZLVv3971X4aXo0AEAAAAAABcLj09XcOGDZPdbtett96qjz/+WDVq1CjRb+TIkcrLy3MaIzMzU5MnT5YkderUSRs2bFBgYKAkKTIyUn369FFMTIxSUlI0adIkPfzww2revHmJOFOnTlVGRoYkafLkyRo3bpyjrUuXLurRo4e6deumnJwcjR49Wl9++eUVf/6rDXsQAQAAAAAAlxs5cqRyc3NVu3ZtLV++3GlxqFBAQIDT96dNmyabzSZJSkhIcBSHCgUFBSkhIUGSZLPZNH369BIxLly4oBkzZkiSIiIiNGbMmBJ9unTpoiFDhkiSkpKStG3btvI/4DWGAhEAAAAAAJaxe9HlPhkZGVq7dq0k6fHHH1ft2rUvOYZpmvrwww8lSW3atFHnzp2d9uvcubNat24tSVq5cqXMi05oW7dunU6cOCFJGjRokPz8nJdCBg8e7Lhfvnz5Jed7tWOJGQAAwDXA8LNuQwu/AJtlY/mH5Fo2liQF1T9p2Vi12mdbNlaXts7/Zt5d+ja42bKxmofUsmwsSTqad86ysb44+LNlY30Yau3pTb+sjbB0PFhv2bJljvv+/fs77o8fP64jR44oNDRU1113XZkxdu/erX379kmSYmJiyuwbExOjnTt3Kjs7Wz///LOaNm3qaNu4cWOxfqXp1KmTgoODdfbsWW3atKnM8a5FzCACAAAAAAAutXnzZklSjRo1FBERoUWLFunGG29UaGioWrVqpdq1a6tZs2Z6/vnndebMGacx0tPTHfdt2rQpc7yi7UWfu5Q4/v7+jv2LLo7hC5hBBAAAAACAVQx7weVpRXLYv39/ud3Dw8MvKfwPP/wgSWrSpIlGjhypN954o0Sf3bt3a8KECXr//ff12WefqUGDBsXa9+7dW+HxGzVq5PS5oq+Dg4NVs2bNcuOkpaXp8OHDys3NVZUqVcrsfy2hQAQAAAAAgA+Liooqt8/F+/qU59ixY5IK9iL67rvvVLNmTb3yyiuKj49X9erVtX37dv3jH//Qp59+qh07dqh///7auHFjsf2BTp8+7bgPCQkpc7zg4GDH/cUzkgrjlBfDWRxfKhCxxAwAAAAAALjU2bNnJUm5ubmqVKmSPv30Uw0fPlxhYWGqUqWKOnXqpFWrVqlnz56SpK+//rrExtDnz5933Jd2ylmhooWcc+eK7xVWGKe8GOXFudYxgwgAAAAAAMuYMtx8gljF/DYjaMuWLapfv75Lo1etWtVRJOrfv7/TE8j8/Pw0ZcoUffrpp5KkJUuW6J577ikWo1BeXl6Z4+Xm/naoQWBgYIlcKhKjvDjXOgpEAAAAAAD4sPr161/yHkPlqVatmqNAVDhLyJnf/e53atiwofbt26etW7eWiFGotI2sCxWOJZVcSlYYp7wY5cW51rHEDAAAAAAAuFTRTaMrusH0oUOHir1f9Lns7OwyYxTdmLro2EXjnD17VidOnKhQnMKlcL6EAhEAAAAAAJaxe9HlPr/73e8c9/n5+WX2LWz39y++yKlt27aO+4yMjDJjFG2PiIi4rDg2m01ZWVlOY/gCCkQAAAAAAMClunXr5rgvLLqU5qeffpIkNWzYsNj7TZs2VYMGDSRJ69evLzPGhg0bHDGaNGlSrK1r166O+7LipKSkOJaYRUdHlznetYgCEQAAAAAAcKk+ffqocuXKklTidLKi1q9fr6NHj0qSbr311mJthmEoLi5OUsHMn82bNzuNsXnzZsfMoLi4OBmGUay9e/fuqlGjhiRpwYIFMk2zRAxJmj9/vuO+b9++peZ8raJABAAAAACAZTy9rMyaJWbXXXedHnnkEUnSf/7zH7377rsl+pw+fVqjR492vB4+fHiJPqNHj3YsPRs5cmSJo+fPnTunkSNHSipYolY0XqGAgACNGjVKkpSenq6pU6eW6JOcnKw5c+ZIkmJiYhQZGVmBT3ltoUAEAAAAAABc7vnnn1fjxo0lSQ8++KBGjhyppKQkbdu2TfPnz1dUVJS+/fZbSdJf//pXp0WZVq1aaezYsZIKloBFR0dr6dKlSklJ0dKlSxUdHa2UlBRJ0rhx49SyZUunuYwbN06tWrWSJI0fP17Dhw9XUlKSNm/erIkTJ+pPf/qTbDabAgMDNX36dBd/E1cHjrkHAAAAAMAqhr3g8jQLcggLC9OaNWvUp08fZWZm6vXXX9frr79eot9f/vIXzZgxo9Q4L730kg4dOqS5c+cqNTVVAwcOLNFnyJAhevHFF0uNUa1aNa1evVqxsbHatWuXEhMTlZiYWKxP9erVtWjRInXo0KHiH/IawgwiAAAAAADgFhEREfr22281ZcoU/f73v1doaKgCAgIUHh6ue++9V19++aXmzJnj2K/IGT8/P82ZM0erV69WXFycGjRooICAADVo0EBxcXH65JNPNHv2bPn5lV3iaNGihVJTUzVp0iR16tRJNWvWVFBQkFq3bq0nn3xSaWlp6t27t6u/gquGYZa2OxNwibKzs9WoUaOCF5Vuk4xAzyYEAIAP8QuwWTaWf1CeZWMFNzxh2ViSFNphr2Vj9YyqYtlYU9r9wbKxJKlS3p8sGyv/QiPLxpIkP//9lo0VEPQfy8Z6avuXlo0lSZMf/135nQqZ56T8tZKkvXv3Kjw83E1ZuU/R30o/LviPwmvX83BGUvaRA2o16HZJV+/3CtdiiRkAAAAAAJYx5e4NoiuGuSIojiVmAAAAAAAAPo4CEQAAAAAAgI9jiRkAAAAAAJaxyzuWmHlDDvAmzCACAAAAAADwcRSIAAAAAAAAfBxLzAAAAAAAsIphL7g8zRtygFdhBhEAAAAAAICPo0AEAAAAAADg41hiBgAAAACARQzZZXjBCWLekAO8CzOIAAAAAAAAfBwFIgAAAAAAAB/HEjMAAAAAACxj//XyNG/IAd6EGUQAAAAAAAA+jhlEAAAAbmD4mdfseJWq2iwbq0roWcvGkqTQFkctG2t4s16WjWWcu9eysSTpZFikZWOdv66qZWNJUtD+1paNVe2Mdf+udQ/LtGwsSZps6WgAKoICEQAAAAAAljHlHcu7rP2LDBR36tQpnT59Wvn5+eX2bdy4sQUZUSACAAAAAABwu//85z968803tXHjRh0/frxCzxiGIZvNmtmEFIgAAAAAAADcaNSoUXrjjTckSabpnbO3KBABAAAAAGAZu2R4wxIzb8jBNyxevFivv/66JKlq1aq6++67dfPNNys0NFR+ft5zdhgFIgAAAAAAADeZNWuWJKlRo0b68ssv1bx5cw9n5Jz3lKoAAAAAAACuMWlpaTIMQ88995zXFockZhABAAAAAGAhu7xjeZc35OAbLly4IEnq2LGjhzMpGzOIAAAAAAAA3KRJkyaSpDNnzng2kXJQIAIAAAAAwDJ2L7pghfj4eEnS2rVrPZxJ2SgQAQAAAAAAuMmYMWPUuHFjTZ8+XRkZGZ5Op1QUiAAAAAAAANykRo0aWrNmjerWravo6Gi9+eabOn78uKfTKoFNqgEAAAAAsIhhmDIMzy/vMgzT0yn4jGbNmkmScnJydPz4cY0cOVKjRo1S7dq1FRQUVOazhmEoKyvLijQpEAEAAAAAALjLzz//XOy1aZoyTVOHDh0q91nDMNyUVUkUiAAAAAAAANxk0KBBnk6hQigQAQAAXAMMP+uWClQKsFk2VuXq5y0bS5JaVwu1bKzfhTSzbKyzOTdYNpYknWpew7KxLlQPsGwsSTLs1v27FnwizLKxagZUtWwseMsJYt6Qg2+YN2+ep1OoEDapvsj48eNlGIbjWrduXbnPrFmzRvHx8QoPD1eVKlUUHh6u+Ph4rVmzpsLj5uTkaMqUKYqKilJoaKhCQkIUERGhsWPHas+ePRWO8/3332vEiBFq0aKFAgMDFRYWpm7dumnWrFmy2az7jzkAAAAAAHD1YAZREd99952mTZtW4f6maWrEiBFKTEws9v6+ffu0YsUKrVixQsOGDdPMmTPLXDeYlZWlXr16aefOncXez8jIUEZGhmbPnq3FixcrNja2zHzmzJmjxx57TLm5uY73zp8/r40bN2rjxo2aP3++Vq1apeuuu67CnxEAAAAAAFz7mEH0K7vdrqFDh8pms6lOnToVeuaZZ55xFIc6duyoJUuWaMuWLVqyZIk6duwoSUpMTNSzzz5baowzZ86od+/ejuLQ0KFDtXbtWn399dd66aWXFBISopMnT6p///5KS0srNc5nn32mYcOGKTc3V3Xr1tVrr72mb775Rp9++qni4+MlSZs3b1Z8fLzsdqYSAgAAAIBn2L3oAn7DDKJfvfbaa9q6davatGmjvn37auLEiWX2z8zM1OTJkyVJnTp10oYNGxQYGChJioyMVJ8+fRQTE6OUlBRNmjRJDz/8sJo3b14iztSpU5WRkSFJmjx5ssaNG+do69Kli3r06KFu3bopJydHo0eP1pdfflkihs1m0+OPPy673a7q1avrq6++KjbWnXfeqccee0xvvvmmNmzYoH//+9966KGHLv1LAgAAAAAATm3YsMFx361bN6fvX46isdyJApGkvXv3Omb5vPXWWxXad2jatGmOPX0SEhIcxaFCQUFBSkhIUJcuXWSz2TR9+nQlJCQU63PhwgXNmDFDkhQREaExY8aUGKdLly4aMmSIZs2apaSkJG3btk0333xzsT4rVqxQZmamJOnpp592WoiaMmWKlixZouPHj2vKlCkUiAAAAAAAcKHu3bs79jMuugdw4fuX4+JY7sQSM0mPPvqozpw5o0GDBql79+7l9jdNUx9++KEkqU2bNurcubPTfp07d1br1q0lSStXrpRpFj/xYN26dTpx4oSkgmPv/Pyc/+MYPHiw43758uUl2leuXOm0b1FBQUEaMGCAJGnHjh3atWuX034AAAAAAHfy9LIylpi5k2maJX77F33/ci6r+PwMovfee0+rVq1SaGiopkyZUqFndu/erX379kmSYmJiyuwbExOjnTt3Kjs7Wz///LOaNm3qaNu4cWOxfqXp1KmTgoODdfbsWW3atKlEe2Gc1q1bq169emXmMmvWLEnSpk2b1LJlyzJzBwAAAAAAFZOUlHRJ73sbny4QnThxQk888YQkadKkSQoLC6vQc+np6Y77Nm3alNm3aHt6enqxAlFF4/j7+6t58+ZKS0sr9oxUsMl1dnb2ZeVyqQrHKc3+/fsvOSYAAAAAANeC0iZ+lDexxFv4dIFo/PjxOnDggG655RYNGTKkws/t3bvXcR8eHl5m30aNGjl9rujr4OBg1axZs9w4aWlpOnz4sHJzc1WlShVJBUWbwilnV5JLRRR9HgAAAABwGQx7weVp3pADvIrP7kG0adMmzZ49W/7+/po5c+YlbRh1+vRpx31ISEiZfYODgx33Z86ccRqnvBhlxXFVLgAAAAAAwHf55AyivLw8DRs2TKZp6sknn1S7du0u6fnz58877gMCAsrsWzjTR5LOnTvnNE55McqK46pcKqK8WUf79+9XVFTUJccFAAAAAMBXHDx4UOvWrdOOHTt07NgxSVJoaKhuuOEGde/eXXXr1vVIXj5ZIHr55ZeVnp6uxo0b67nnnrvk56tWreq4z8vLK7Nvbm6u4z4wMNBpnPJilBXHVblURHlL2AAAAAAA5THlHSeIWXc6Fgrs3btXY8eO1cqVK0s9ur5SpUrq27evpkyZosaNG1uan88tMcvIyNDEiRMlSQkJCcWWXVVUtWrVHPflLdU6e/as4/7iJWCFcSqy3Ku0OK7KBQAAAAAAuMfGjRvVrl07vf/++7pw4UKpR9rbbDa9//77at++vdNTzN3J52YQTZs2TXl5eWrWrJlycnL07rvvluizY8cOx/2XX36pAwcOSJLuuusuBQcHF5tJU97JXkWXZV28yXN4eLi++eYbnT17VidOnChzo+rCOGFhYcWWirkqFwAAAAAA4Hr79u3TXXfdpVOnTkmSevbsqb/85S+KiopyLCc7ePCgtm7dqrlz5+qTTz7RqVOndNddd+n7779XgwYNLMnT5wpEhcusfvrpJ913333l9n/hhRcc97t371ZwcLDatm3reC8jI6PM54u2R0REFGtr27atPvjgA0e/zp07O41hs9mUlZXlNEZISIgaNWqkvXv3XlEuAAAAFeZ37S5LqGRYOcHeuiUmfhesXc7in+N86YQ7GKa1fx6rHj1fficXqVT5f5aN9eOv+6BYxzN7rHgHu7xjiZk35OAbXnnlFZ06dUqVKlXSvHnz9Oc//7lEn0aNGqlRo0aKj4/X4sWL9dBDD+nUqVN65ZVX9Nprr1mSp88tMXOFpk2bOip469evL7Pvhg0bJEkNGzZUkyZNirV17drVcV9WnJSUFMfysOjo6BLthXF27tzpmO3kTNExnMUBAAAAAACu9cknn8gwDA0dOtRpcehi999/v+NgrdWrV1uQYQGfKxDNnz+/1LV+hVfRjauTkpIc7xcWeAzDUFxcnKSCWTmbN292OtbmzZsds3bi4uJkGEax9u7du6tGjRqSpAULFsgs5W8/5s+f77jv27dvifa7777bad+icnJy9N5770kqmLnUqlUrp/0AAAAAAIDr/PLLL5Kk/v37V/iZwr6Fz1rB5wpErjJ69Gj5+xes0Bs5cmSJY+PPnTunkSNHSpL8/f01evToEjECAgI0atQoSVJ6erqmTp1aok9ycrLmzJkjSYqJiVFkZGSJPn379lXz5s0lSRMnTnQsRytq3LhxOn78uOMeAAAAAGA9w7B7zQVr1KpVS5IcE0QqorBv4bNWoEB0mVq1aqWxY8dKKlgCFh0draVLlyolJUVLly5VdHS0UlJSJBUUZFq2bOk0zrhx4xyzecaPH6/hw4crKSlJmzdv1sSJE/WnP/1JNptNgYGBmj59utMYlStX1muvvSY/Pz+dOnVK0dHRev3117VlyxZ99tlnuueee/Tmm29KKliO9uCDD7r42wAAAAAAAM506tRJkrR9+/YKP1PYt/BZK/jcJtWu9NJLL+nQoUOaO3euUlNTNXDgwBJ9hgwZohdffLHUGNWqVdPq1asVGxurXbt2KTExUYmJicX6VK9eXYsWLVKHDh1KjRMbG6uZM2fq8ccf18GDBx2zl4qKiorSihUrVKlSpYp/SAAAAACAC7FJta8ZNWqUVq1apcmTJ6t///4KCgoqs39OTo4mTZokwzCc/rZ3F2YQXQE/Pz/NmTNHq1evVlxcnBo0aKCAgAA1aNBAcXFx+uSTTzR79mz5+ZX9Nbdo0UKpqamaNGmSOnXqpJo1ayooKEitW7fWk08+qbS0NPXu3bvcfIYOHapt27Zp6NChatasmapWrarrrrtOXbt21VtvvaWvvvpKtWvXdtXHBwAAAAAA5fjjH/+o5557Tunp6erevbu+/fbbUvt+99136tGjh3bu3KnnnntOt99+u2V5MoPIiQkTJmjChAkV7h8bG6vY2NgrGjM4OFjjx4/X+PHjryjODTfcUGIGEgAAAAAAcK9//vOfpbYZhqFOnTopJSVFN998s9q1a6fIyEjVqVNHhmHo4MGD2rp1a4mlZf/85z/1j3/8w5L8KRABAAAAAGAZU96xvMv5Kdq4fBMmTChxevnFDMOQaZravn270z2JTNOUYRhKSUlx7GtMgQgAAAAAAOAqYpoVK7yV1a+iMVyNAhEAAAAAAMAVstu9YWbY5aNABAAAAACAZUx5x/Iub8gB3oRTzAAAAAAAAHwcBSIAAAAAAAAfxxIzAAAAAACsYtgLLk/zhhzgVSgQAQAA4JKYNusmodtyAiwbS5Kyzvxi2Vhpp3dbNlbbqhstG0uSrvtvN8vGMv3LPlLa1QKMby0b67j/l5aN9dH+XZaNVaCuxeMBKA9LzAAAAAAAAHwcM4gAAAAAALCM/dfL07whB3gTZhABAAAAAAD4OApEAAAAAAAAPo4lZgAAAAAAWMSQXYYXLO/yhhzgXZhBBAAAAAAA4OMoEAEAAAAAAPg4lpgBAAAAAGAVw15weZo35OCjTp8+rd27d+v06dPKz88vt3+3bt0syIoCEQAAAAAAgNu9/fbbevPNN5WWllbhZwzDkM1mc2NWv2GJGQAAAAAAcDnDMCp0de/evdxYa9asUXx8vMLDw1WlShWFh4crPj5ea9asqXA+OTk5mjJliqKiohQaGqqQkBBFRERo7Nix2rNnzxV80rLl5+fr7rvv1ogRI5SWlibTNC/psgoziAAAAAAAsIwpecUJYtYVHq6EaZoaMWKEEhMTi72/b98+rVixQitWrNCwYcM0c+ZMGYZRapysrCz16tVLO3fuLPZ+RkaGMjIyNHv2bC1evFixsbEu/wwzZ87URx99JEmqW7euHn74Yd18880KDQ2Vn5/3zNuhQAQAAAAAANzmr3/9qx599NFS24ODg0tte+aZZxzFoY4dO2r8+PFq3ry5srKyNHnyZKWmpioxMVFhYWF68cUXncY4c+aMevfu7SgODR06VAMHDlRgYKCSkpI0ceJEnTx5Uv3791dycrLat29/BZ+2pIULF0qS2rZtq40bN6pWrVouje8qFIgAAAAAAIDb1KlTRzfccMMlP5eZmanJkydLkjp16qQNGzYoMDBQkhQZGak+ffooJiZGKSkpmjRpkh5++GE1b968RJypU6cqIyNDkjR58mSNGzfO0dalSxf16NFD3bp1U05OjkaPHq0vv/zycj5mqdLT02UYhp599lmvLQ5J7EEEAAAAAICF7F50ebdp06Y5NmhOSEhwFIcKBQUFKSEhQZJks9k0ffr0EjEuXLigGTNmSJIiIiI0ZsyYEn26dOmiIUOGSJKSkpK0bds2V34Mh9atW7slrqswgwgAAOAaYLdZ9/d++ecrWzZW7rEgy8aSpIM/VbdsrFk1Ui0ba3gzy4aSJLWv7p4fV94g7XSWZWO9udO673H7D5UsGwuoCNM09eGHH0qS2rRpo86dOzvt17lzZ7Vu3Vo7d+7UypUr9dprrxXbi2jdunU6ceKEJGnQoEGl7vkzePBgzZo1S5K0fPly3XzzzS77LC1bttS3336rY8eOuSymOzCDCAAAAAAAy3h61tDVMYNo9+7d2rdvnyQpJiamzL6F7dnZ2fr555+LtW3cuLFEP2c6derk2Atp06ZNl5NyqQYOHCjTNLVq1SqXxnU1CkQAAAAAAMBtli1bptatWyswMFDVqlVTy5YtNWjQICUlJZX6THp6uuO+TZs2ZcYv2l70uUuJ4+/v79i/6OIYV2rUqFFq37693nrrrWIFK2/DEjMAAAAAAHzY/v37y+0THh5+2fF/+OGHYq8zMzOVmZmphQsX6u6779b8+fNVo0aNYn327t1b4bEbNWrk9Lmir4ODg1WzZs1y46Slpenw4cPKzc1VlSpVyuxfUVWqVNHnn3+u+Ph43X777Ro1apTuv/9+tWnTRlWrVnXJGK5AgQgAAAAAAKsY9oLL04rkEBUVVW530zQveYigoCD16dNHt912m9q0aaOQkBAdPnxY69ev18yZM3X06FGtXLlScXFx+s9//qPKlX/b4+706dOO+5CQkDLHKVwaJhUcaV9UYZzyYjiL46oCUaVKv+3xZZqmXn31Vb366qsVetYwDMdG3e5GgQgAAAAAALjcvn37nM7auf322zVy5Ej17NlTqampWr9+vd566y2NGjXK0ef8+fOO+4CAgDLHKVrIOXfuXLG2wjjlxSgvzpW4uLh2OcU2K1AgAgAAAADAh23ZskX169d3edyylnTVrVtX77//viIiIpSXl6eEhIRiBaKiS6/y8vLKHCc3N9dxHxgYWKytME55McqLcyWee+45l8VyJwpEAAAAAABYxJApwwtOEDP02yyW+vXrX9EeQ5erWbNmuv3227V69WplZmbql19+UYMGDSRJ1apVc/S7eNnYxc6ePeu4v3gpWWGc8mKUF+dKXC0FIk4xAwAAAAAAHtG2bVvHfeGx9lLxjamzs7PLjFF0Y+qiG1YXjXP27FmdOHGiQnHCwsJctv/Q1YQCEQAAAAAA8IjS9uMpWjjKyMgoM0bR9oiIiMuKY7PZlJWV5TSGr6BABAAAAACAZexedHneDz/84LgvXF4mSU2bNnW8Xr9+fZkxNmzYIElq2LChmjRpUqyta9eujvuy4qSkpDiWmEVHR1cs+WsMexABAAAAAADL/fTTT/rPf/4jqWA/ooYNGzraDMNQXFyc3nrrLWVkZGjz5s3q3LlziRibN292zAyKi4uTYRjF2rt3764aNWro5MmTWrBggcaPH1+ijyTNnz/fcd+3b9/L+jwLFy503D/00ENO378cRWO5k6UFouzsbG3cuFFff/21srOzdfjwYR09elSBgYEKCwtTWFiY2rVrp1tvvVWRkZGqXLmylekBAAAAAAAX+Pjjj9WzZ0/5+zsvOxw8eFD33HOPLly4IEl67LHHSvQZPXq03n77bdlsNo0cOVIbNmwodrrYuXPnNHLkSEmSv7+/Ro8eXSJGQECARo0apRdeeEHp6emaOnWqxo0bV6xPcnKy5syZI0mKiYlRZGTkZX3mwYMHyzAMGYZRrKhT+P7luDiWO7m9QJSZmal58+Zp6dKl2r17d4n2wvWGhV/WkiVLJElVqlTRH//4Rz344IPq27dvqX+oAAAAAAC4ahj2gsvT3JzDyJEjdeHCBfXr109dunRRkyZNFBgYqCNHjmjdunWaOXOmjh49KqlgGZizAlGrVq00duxYvfLKK0pJSVF0dLSeeuopNW/eXFlZWZo0aZJSU1MlSePGjVPLli2d5jJu3DgtXbpUP/74o8aPH6/MzEwNHDhQgYGBSkpK0ssvvyybzabAwEBNnz79ij53aXsqlfa+N3Fb1eWbb77Riy++qE8//VSmaRb7MipXrqzQ0FCFhoaqVq1aOnfunI4dO6bjx4/r1KlTkqTz589r9erVWr16terWrasnnnhCjz/+uIKDg92VMgAAAAAAcJFffvlFCQkJSkhIKLVPv379NHv27FJPDXvppZd06NAhzZ07V6mpqRo4cGCJPkOGDNGLL75Y6hjVqlXT6tWrFRsbq127dikxMVGJiYnF+lSvXl2LFi1Shw4dKvbhnHA2Kaas972NywtEmZmZGjNmjFatWuUoCl133XW666671LlzZ0VFRaldu3aqVKmS0+cPHz6sLVu2aMuWLVq7dq2Sk5N14MAB/d///Z9effVVPf/88xoxYsRlT88CAAAAAADutWDBAq1fv17Jycn66aefdOTIEZ06dUohISFq1KiRbrnlFg0aNEhdunQpM46fn5/mzJmjfv36KTExUVu3btWRI0dUu3ZtRUZGavjw4erZs2e5+bRo0UKpqal64403tGzZMmVmZiovL0+NGjVSbGysnnjiCV1//fVX9JlLe/5K41rFMF08z6lq1arKy8tT5cqV1a9fP91///268847L3uJ2J49e7Ro0SItWLBAP/74owzD0EsvvaS///3vrkwbLpCdna1GjRoVvKh0m2QElv0AAABwGT9/65YrVKp6wbKxqoSetWwsSQpudMyysWq0OmTZWHWanLZsLElqVS3UsrHy7PmWjSVJP5w6YtlYJ3fVsWysU5nWjSVJh7c2qXhn85yUv1aStHfvXoWHh7snKTcq+ltp99IXFB5Wy8MZSdmHj6vpvc9Kunq/V7iWy4+5N01Tw4cP165du7R48WL17t37ivYPaty4sZ5++mmlp6dr0aJFatu2rfLy8lyYMQAAAAAAgG9z+RKzn376qdjRdK5iGIbuu+8+3Xfffdq/f7/L4wMAAAAAAPgqlxeI3FEculj9+vXdPgYAAAAAAK5n//XyNG/IAd7E5UvMAAAAAAAAcHWhQAQAAAAAAODjXL7E7FKcOnVKp0+fVn5++ScPNG7c2IKMAAAAAABwJ1PesbzLpQea4xpgeYHo888/11tvvaWNGzfq+PHjFXrGMAzZbDY3ZwYAAAAAAOCbLC0QjRgxQm+//bYkyTSpVgIAAAAAAHgDywpEs2bNUmJioiSpWrVq6tu3r2688UbVrFlTfn5shQQAAAAA8AGGveDyNG/IwUds2LBBUsGJ7C1btvRwNqWzrEBUWByKiIjQl19+qbp161o1NAAAAAAAgEd0795dhmFozpw5FIgkKSMjQ4ZhaMKECRSHAAAAAAA+yZBdhhdsUu0NOfiKkJAQnT17Vu3atfN0KmWybG1XSEiIJHl1tQwAAAAAAMCVCk9lz8nJ8XAmZbOsQBQRESFJ2r9/v1VDAgAAAAAAeFSvXr0kSV988YWHMymbZQWiYcOGyTRNLVmyxKohAQAAAADwMnYvumCFJ598UqGhoZo+fbp27Njh6XRKZdkeRPfff79WrFihRYsWKSoqSo8//rhVQwMAAFzzTLth2Vj5eZUsGyvvVFXLxpIk7Q21bChbToBlY53Zc9aysSRpT9AFy8ay8s++JF04dZ1lY+UeC7ZsrPNHQywbC/A19erV06pVq9SvXz9FR0frqaee0v33368mTZp4OrViLCsQSdKiRYs0duxYjR49Wu+++64GDBigVq1aKSgoqNxnu3XrZkGGAAAAAAAArtOsWTNJUl5enk6fPq1nn31Wzz77rEJCQlSzZk1VqlT6X7wYhqGsrCxL8rS0QFS5cmXdeOONCg0NVXJyspKTkyv0nGEYstlsbs4OAAAAAAB3M+Udy7tMTyfgM37++edir02z4Ls/ffq0Tp8+XeazhmHdLEnLCkQ2m0333Xefli9fLum3LwQAAAAAAOBaNWjQIE+nUCGWFYhmzpypDz74QJLUpEkTDRo0SO3bt1fNmjXl52fZXtkAAAAAAACWmTdvnqdTqBDLCkSzZ8+WJHXu3Flr165VYGCgVUMDAAAAAOAl7JLhDUvMvCEHeBPLpu5kZmbKMAw9/fTTFIcAAAAAAAC8iGUziIKDg3Xu3Dk1atTIqiEBAAAAAAC8yvnz57Vt2zYdOHBAOTk5iouLU/Xq1T2dlnUziG688UZJ0v/+9z+rhgQAAAAAwMvYveiClfbu3atBgwapZs2a6tatmwYMGKDBgwcrOzu7WL85c+YoKipKt99+u6UHfFlWIBoxYoRM09ScOXOsGhIAAAAAAMDjtmzZoo4dO+rf//638vLyZJpmqcWfPn36KC0tTV9++aU+//xzy3K0rEAUHx+vESNGaNWqVRo7dqzy8/OtGhoAAAAAAMAjTp48qbi4OB07dkz16tXTm2++qe3bt5faPywsTD179pQkrV692qo0rduDaOHChercubNSU1M1bdo0vf/++4qPj1erVq0UFBRU7vMPPfSQBVkCAAAAAOBO3rK8yxty8A0JCQk6ePCgateureTkZDVu3LjcZ26//XZ9+OGH2rJliwUZFrCsQDR48GAZhuF4vXfvXs2YMaNCzxqGQYEIAAAAAABcdT7++GMZhqG//e1vFSoOSdLvfvc7SVJWVpY7UyvGsgKRJEs3VwIAAAAAAPC0Xbt2SZK6detW4Wdq1qwpSTp16pQ7UnLKsgLR7t27rRoKAAAAAACvZBh2GYbnl3d5Qw6+4ty5c5Kk4ODgCj9z5swZSVLVqlXdkpMzlhWIrr/+equGAgAA8Dmm3Si/k6vYKlk3VE6AZWNJkmm37AwX2c5Xtmys84erWTaWJBn+1+4PT3uedYsw8s9bOZZ1fx4BXxMWFqZ9+/Zp7969uvHGGyv0zLZt2yRJ9evXd2dqxVj3/4AAAAAAAAA+JioqSpL06aefVqh/fn6+EhMTZRiGunbt6s7UiqFABAAAAACAZUz9dpKZJy/2CLbKfffdJ9M0NXfuXKWmppbZ1263a8SIEfrhhx8kSX/+85+tSFESBSIAAAAAAAC36devn2655Rbl5ubqtttu0xtvvKFDhw452g3D0MGDB/XOO++oU6dOmjt3rgzD0J133qnu3btblqfLC0Tt2rXTsmXLXB1WkrR37149+uijmjRpklviAwAAAAAAuNrKlSvVpk0bnThxQqNGjVL9+vVlGAX7B950001q0KCBBg8erO+++06maeqGG27QokWLLM3R5QWi77//XgMHDlS7du00d+5clxzJ9s0332jYsGFq2bKlZs2apdzcXBdkCgAAAACA1Ty9tKzoBavUrl1bKSkpeuyxx1SlShWZpum4cnNzHff+/v4aNmyYvv76a8dR91Zx+bb48+bN09NPP63vv/9eQ4cO1eOPP67evXsrPj5enTt3VpMmTcqNcfbsWaWkpGjt2rVasmSJfvrpJ0mSaZoaMGCAHnnkEVenDQAAAAAA4DZBQUFKSEjQhAkT9NlnnyklJUWHDh1Sfn6+rrvuOnXs2FE9e/ZUgwYNPJKfYZqmy3emysnJ0YwZM/Svf/1LR48edUybkqTQ0FB17NhRderUUa1atVSrVi2dO3dOx44d0/Hjx/Xjjz9q586dstsLqpmF6d1xxx16/vnnHbt/w/tkZ2erUaNGBS8q3SYZgZ5NCAAAuIXhZ93GpoZ/vmVjSVKlqjYLx7pg3VgB1n0uiWPuXeVaPubelhNQ8c7mOSl/raSCbUfCw8PdlJX7FP2t9L9lIxVep7qHM5KyD53S9f0TJF293ytcyy3/ixMUFKSnn35aTz75pN555x3NnTtX33zzjSTp6NGjWrt2banPFq1X1apVSwMGDNBjjz2mG264wR2pAgAAAAAA+Dy3lqSrVq2qoUOHaujQodqzZ4/WrVunjRs36uuvv1Z2drZOnz79WyL+/qpdu7batWunW2+9VbfeeqtuueUWVa5sbSUbAAAAAADAnUzT1E8//aRjx45JKlht1axZs2IrsKxm2ZzFxo0b66GHHtJDDz3keC8vL0/Hjh1T1apVLd98CQAAAAAAyxn2gsvTvCEHH/Tpp5/qzTff1Lp165STk1OsLSgoSN27d9ejjz6qnj17Wp6bdYtanQgICFC9evU8mQIAAAAAAIBbnT17Vg888IA+/vhjScW31yna55NPPtEnn3yiPn366N///reCg4Mty9GjBSIAAAAAAIBrmd1uV8+ePfXVV1/JNE1VrlxZf/rTnxQVFaW6devKNE0dOnRIW7du1eeff668vDx99NFHio2N1bp16yxbdkaBCAAAAAAAy9h/vTzNG3LwDTNnztSmTZtkGIbuuOMOzZ49Ww0bNnTad9++fRo6dKjWrFmjTZs2aebMmfrrX/9qSZ5+lowCAAAAAADggxYuXChJioyM1OrVq0stDklSw4YN9fHHHysqKkqmaWrBggVWpckMIgAAAFwa027hCSu2StaNJSk/x7q/P7XnWffZbH4l97pwJ8PC8Sz982jxeJaOZfG/a4AvSU9Pl2EYevLJJ+XnV/7/z1SqVEl/+9vfNHDgQKWnp1uQYQEKRAAAAAAAWMSQKcMLlncZsrZw7MsK9xBq1apVhZ9p2bJlsWetwBIzAAAAAAAAN2nevLkk6dChQxV+prBv4bNWoEAEAAAAAADgJvfdd59M03TsRVQRCxculGEYuvfee92YWXEUiAAAAAAAsIph954Llhg1apRuuukmvfvuu5o8eXK5/adMmaIlS5aoY8eOGj16tPsT/BV7EAEAAAAAAFyhPXv2lNo2e/ZsDR8+XE8//bSWLFmiQYMGKTIyUnXq1JFhGDp48KC2bt2qd955R99++60iIyOVmJioAwcOqHHjxpbkT4EIAAAAAADgCjVt2rRC/dLS0jRmzJgy+6SkpOimm26SYRiy2WyuSK9cHi0QmaapY8eOKScnRw0aNFClShytCAAAAAC4ltl/vTzNG3K4tpjm1X0ynOUFovz8fC1cuFDz5s3T1q1blZeXJ8MwlJaWprZt2zr6rVq1Shs2bFCNGjX0//7f/7M6TQAAAAAAgAqbN2+ep1O4IpYWiA4dOqS7775b33zzTbmVtaZNm6pPnz4yDEO9evVShw4drEkSAAAAAADgEg0aNMjTKVwRy04xs9vt6tOnjzZv3izDMDRgwAC9/vrrpfb/3e9+py5dukiSVqxYYVWaAAAAAAC4kd2LLuA3lhWIFi5cqC1btqhy5cpavXq13n33XT366KNlPnPXXXfJNE1t2rTJoiwBAAAAAAB8j2UFoiVLlsgwDA0fPlx33HFHhZ7p2LGjJGnnzp3uTA0AAAAAAMCnWbYH0bfffitJ6tOnT4WfqVOnjiTp6NGj7kgJAAAAAACLmfKO5V1X94lbVyObzabVq1dr48aN+umnn3T69Gnl5+eX+YxhGFq7dq0l+VlWIDpx4oSk34o+FXHhwgVJkp+fZROdAAAAAAAAXGrdunV6+OGHtWfPHsd7ZR3eZRiGTNOUYRhWpCfJwgJRrVq1dPjw4UuaDVS4tCwsLMxdaQEAAMCLmXbr/sPY6vEMiz8brj5W//kH4B7ffvutevbsqby8PJmmqapVq6ply5aqWbOmV02IsaxA1LZtW61fv16bNm1Sjx49KvTM4sWLZRiGbr75ZjdnBwAAAACABQx7weVp3pCDj5gwYYJyc3NVpUoV/etf/9LDDz+sqlWrejqtEiwrVfXp00emaerNN9/UsWPHyu0/b948ffbZZ5Kkvn37ujs9AAAAAAAAl9u0aZMMw9D/+3//T3/961+9sjgkWVggGj58uBo0aKBDhw7p9ttv1/fff++03969ezVy5EgNHTpUhmGoZcuWuv/++61KEwAAAAAAN7J70QUrnD9/XpJ05513ejiTslm2xCwwMFArVqzQH/7wB3377bdq3769Wrdu7WgfMWKEDh8+rB9//FFSwWZN1apV0/vvv+9Va/IAAAAAAAAqqkmTJkpPT3ccxOWtLK28REZG6uuvv9YNN9wg0zSVkZHhaPvqq6+0c+dOmaYp0zQVERGhr776SjfccIOVKQIAAAAAALjM3XffLUnasGGDZxMph+VTc9q1a6fvvvtOH3/8sR555BF16NBB9evXV506ddS2bVs98MADWrp0qbZv3+624tCpU6f07rvvasyYMYqJiVGLFi1Uo0YNBQQEqE6dOurevbsmT55c4RPX1qxZo/j4eIWHh6tKlSoKDw9XfHy81qxZU+GccnJyNGXKFEVFRSk0NFQhISGKiIjQ2LFjix2DV57vv/9eI0aMUIsWLRQYGKiwsDB169ZNs2bNks1mq3AcAAAAAIDrGbJ7zQVrPPHEE6pfv76mTp2qn3/+2dPplMowTdP0dBJW++KLL3T77beX26927dr697//rTvuuMNpu2maGjFihBITE0uNMWzYMM2cOVOGUfoRlVlZWerVq5d27tzptL1GjRpavHixYmNjy8x3zpw5euyxx5Sbm+u0vXPnzlq1apWuu+66MuNcruzsbDVq1KjgRaXbJCPQLeMAAABcCww/n/vPcFwijrn/lXlOyl8rqWDP2vDwcA8ndOmK/lbau/wBhdcJ8XBGUvahM2oUv0jS1fu9Xk3S0tLUu3dv5ebm6qWXXlL//v1Vo0YNT6dVjM9u7tOoUSM99NBDmjFjhpYvX67k5GR99dVXWrp0qfr3769KlSrpyJEj6tOnj9LS0pzGeOaZZxzFoY4dO2rJkiXasmWLlixZoo4dO0qSEhMT9eyzz5aax5kzZ9S7d29HcWjo0KFau3atvv76a7300ksKCQnRyZMn1b9//1LzkKTPPvtMw4YNU25ururWravXXntN33zzjT799FPFx8dLkjZv3qz4+HjZ7VSKAQAAAACwSvv27R1LzIYPH67rrrtO9erVU7Nmzcq8mjdvblmOPjmDKD8/X5UqVSqzz8qVK9W3b19JUnx8vD744INi7ZmZmYqIiJDNZlOnTp20YcMGBQb+NmMmJydHMTExSklJkb+/vzIyMpz+g50wYYKef/55SdLkyZM1bty4Yu3Jycnq1q2bbDabevTooS+//LJEDJvNpoiICGVmZqp69er673//W2Ksxx57TG+++aYkacGCBXrooYfK/PyXgxlEAAAAFccMIpSHGUS/utZmEK24z3tmEPVdIunq/V6vJh988IGGDBmi06dP61LKMIZhKD8/342Z/cayU8y8SXnFIalgE6k2bdooIyPD6UZS06ZNc+zpk5CQUKw4JElBQUFKSEhQly5dZLPZNH36dCUkJBTrc+HCBc2YMUOSFBERoTFjxpQYp0uXLhoyZIhmzZqlpKQkbdu2TTfffHOxPitWrFBmZqYk6emnn3ZaiJoyZYqWLFmi48ePa8qUKW4pEAEAAAAAgOKSk5M1cOBAR6Hn+uuvV/v27VWzZk2vOrXd5QWiihRfLpVhGB7ZYDk4OFiSdP78+WLvm6apDz/8UJLUpk0bde7c2enznTt3VuvWrbVz506tXLlSr732WrG9iNatW6cTJ05IkgYNGlTqH4zBgwdr1qxZkqTly5eXKBCtXLmyWF9ngoKCNGDAAM2aNUs7duzQrl271LJlS+cfHAAAAAAANxk/frymTJnieJ2UlKTu3buX+cyaNWuUmJioLVu26PDhwwoLC1NUVJSGDRumO++8s0Lj5uTk6I033tCyZcuUmZmpvLw8NWrUSL169dKoUaPUuHHjK/lYpXrxxReVn5/v2F+4Z8+ebhnnSrm8VFV4TL2rL6ulp6fr22+/lVRQBCpq9+7d2rdvnyQpJiamzDiF7dnZ2SV2K9+4cWOJfs506tTJUazatGlTifbCOK1bt1a9evXKzaW0OAAAAAAAdzMl2b3g8swy1++++07Tpk2rcH/TNDV8+HD17NlTK1as0L59+5SXl6d9+/ZpxYoV6tmzp4YPH15u3SArK0s33XSTxo8fr61bt+r48eM6e/asMjIy9Oqrr6p9+/b65JNPrvTjObVt2zYZhqHnn3/ea4tDkhtmED333HNltq9evVopKSmSpN/97neKiopS3bp1ZZqmDh06pK1bt2rHjh0yDEOdOnUq9+QuV8rJydG+ffv08ccfa/LkyY7pX0888USxfunp6Y77i4tHFyvanp6erqZNm15yHH9/fzVv3lxpaWnFnpEKNrnOzs6+rFwuVeE4pdm/f/8lxwQAAAAA+Aa73a6hQ4fKZrOpTp06OnToULnPXHw41Pjx49W8eXNlZWVp8uTJSk1NVWJiosLCwvTiiy86jeHscKiBAwcqMDBQSUlJmjhxouNwqOTkZLVv3951H1rS2bNnJUldu3Z1aVxXs7RA9MILLyglJUU33nijEhMTFRkZ6bRfSkqKhg0bppSUFPXu3bvMU8Cu1Pz58/Xwww+X2j527Fg98MADxd7bu3ev4768jbwcmzZf9FzR18HBwapZs2a5cdLS0nT48GHl5uaqSpUqkgqKNoWV0ivJpSKKPg8AAAAAwKV47bXXtHXrVrVp00Z9+/bVxIkTy+yfmZmpyZMnS1KJw6EiIyPVp08fx+FQkyZN0sMPP+x0T96pU6cqIyNDUsnDobp06aIePXqoW7duysnJ0ejRo50eDnUlmjZtqu+//145OTkujetqlu2GtHbtWj333HNq1aqVNm3aVGpxSCr4B79x40a1aNFCEyZM0BdffGFVmg4dOnTQ5s2bNWXKlGL7BknS6dOnHfchIWXvPl+4NEwqqFo6i1NejLLiuCoXAAAAWMu0G1xcZV64NtlNu9dcVtq7d69j8sdbb72lgICAcp+p6OFQkhyHQ13sUg6HkuQ4HMqV4uPjZZqmPvvsM5fGdTXLCkSFGzT//e9/L1aoKE1wcLD+/ve/yzTNEqd/udLdd9+t7du3a/v27dqyZYuWLFmivn376ttvv9UDDzygVatWlXim6KbV5f2hLpzpI0nnzp1zGqci/2KUFsdVuVTE3r17y7y2bNlyyTEBAAAAANe+Rx99VGfOnNGgQYPK3ZBauvTDoaSCA5wu3ovoUg6HKrR8+fJy87sUY8aMUcuWLTV9+nTHljveyLJj7gu/hEtZy3fjjTdKkrZu3eqWnCSpZs2axZZ3RUZGauDAgXrnnXc0aNAgxcXFac6cOcX+sFStWtVxn5eXV2b83Nxcx/3F1c7COOXFKCuOq3KpiPKWsAEAAAAAcLH33ntPq1atUmhoaLHTy8pyqYdD7dy503E4VNG9fy/1cKizZ8+6/FCnatWqae3aterfv7+6deumJ598Uvfee69atWpV7De9p1lWIDp27Jgk6eTJkxV+5tSpU5Kk48ePuyWnsjz44INatWqV3nvvPT3++OOKi4tTrVq1JBX8wy1U3lKtws2opJJLwArjVGS5V2lxXJULAAAAAMD98k1T+R44qdtZHoUqcuDQ5U4YOHHihOPgp0mTJiksLKxCz3nT4VBXqlKlSo570zT1yiuv6JVXXqnQs4ZhOJbZuZtlS8waNGggSfrggw8q/Mz7778vSapfv75bcipPXFycpILCyqeffup4v+i/GOWd7FV0M+iLN3kujHP27FnHlLfy4oSFhRVbKuaqXAAAAAAAvikqKkqNGjUq87pc48eP14EDB3TLLbc49vmpCE8dDiXJcTiUq5im6bgufl2RyyqWzSC688479dZbb2nWrFnq1q2bBgwYUGb/999/X7NmzZJhGJYedV9U0crm//73P8d927ZtHfeFO6GXpmh7REREsba2bds6CmYZGRmlrqm02WzKyspyGiMkJESNGjXS3r17rygXAAAAAABcadOmTZo9e7b8/f01c+bMEgdAlcUbDocqOjnjSpR12rs3saxA9H//939atGiRTp8+rfvuu0+LFy/W4MGDFRkZqTp16sgwDB08eFBbt27VggUL9NFHH8k0TVWvXl1PP/20VWkWU7jeUSr+h6lp06Zq0KCBfvnlF61fv77MGBs2bJAkNWzYUE2aNCnW1rVrV8f9+vXrSy0QpaSkOJaHRUdHl2jv2rWrlixZop07d+rAgQOqV6+e0zhFc3UWBwAAAADgXvmmXfkWnyBWWh6FtmzZ4vKVO3l5eRo2bJhM09STTz6pdu3aXdLz3nQ41JW6WgpEli0xa9iwoT788EOFhITINE19/PHH6tevnxo3bqyqVauqSpUqaty4sfr16+coDlWrVk0ffvihGjZsaFWaxSxbtsxxX/QPs2EYjuVnGRkZ2rx5s9PnN2/e7Ji1ExcXV6Ja2r17d9WoUUOStGDBglKnjs2fP99x37dv3xLtd999t9O+ReXk5Oi9996TVDBzqVWrVk77AQAAAAB8S/369RUeHl7mdalefvllpaenq3HjxpdVIPGmw6F8hWUFIqlgx/C0tDT17dtXfn5+pa6v8/PzU3x8vNLS0srdrfxyzJ8/v1g10plp06bpk08+kSQ1adKk2GwfSRo9erT8/QsmYI0cObJEdfHcuXMaOXKkpILNrkaPHl1ijICAAI0aNUpSwcZZU6dOLdEnOTlZc+bMkVTw/UVGRpbo07dvXzVv3lySNHHiRMdytKLGjRvn2Ox73LhxpX9wAAAAAACuQEZGhiZOnChJSkhIKLZ0q6K86XAoX2HZErNC119/vT744AMdOHBASUlJ2r59u44fPy7TNBUaGqp27dqpR48epS6TcoUJEyZozJgx6tevn7p27armzZsrJCREp0+f1vbt27Vo0SJ99dVXkgqKOG+//bajGFSoVatWGjt2rF555RWlpKQoOjpaTz31lJo3b66srCxNmjRJqampkgoKMi1btnSay7hx47R06VL9+OOPGj9+vDIzMzVw4EAFBgYqKSlJL7/8smw2mwIDAzV9+nSnMSpXrqzXXntNd911l06dOqXo6Gg988wzioqK0vHjx/X222879jrq2rWrHnzwQRd9kwAAAACAS2H3klPM7G7MYdq0acrLy1OzZs2Uk5Ojd999t0SfHTt2OO6//PJLHThwQJJ01113KTg42KWHQ33zzTeOw6HK2qi6tMOhfIXlBaJC9erV03333af77rvPI+MfO3ZMb7/9tt5+++1S+4SHh2vu3Ln64x//6LT9pZde0qFDhzR37lylpqZq4MCBJfoMGTJEL774YqljVKtWTatXr1ZsbKx27dqlxMREJSYmFutTvXp1LVq0SB06dCg1TmxsrGbOnKnHH39cBw8edMxeKioqKkorVqwodsQeAAAAAACuVLhU66effqrQb/4XXnjBcb97924FBwd71eFQV+qf//znFT3/j3/8w0WZlM1jBSJPWrt2rb744gslJSUpPT1dBw8e1NGjR1W1alXVrVtXHTp0UO/evTVgwAAFBQWVGsfPz09z5sxRv379lJiYqK1bt+rIkSOqXbu2IiMjNXz4cPXs2bPcfFq0aKHU1FS98cYbWrZsmTIzM5WXl6dGjRopNjZWTzzxhK6//vpy4wwdOlRdunTRa6+9prVr1+qXX35RcHCwIiIi9MADD+iRRx4pMRMKAAAAAGAdm2nK5gWbVNu8YBZTWbztcKgrMWHChEs6we1iVhWIDLO0nZGBS5Sdnf3bdL5Kt0mG723qBQAAAMDFzHNS/lpJBUuALmfDZE8r+lvp+/f6qmGd0iciWGXfoRz9bsAKSZ75XidMmKDnn39ekpSUlKTu3buX6PPoo4/qrbfeklSwP6+z4s7mzZvVpUsXR/833nijWHteXp7q1KmjkydPKiIiQt9//73TYs2IESM0a9YsSQWnujnb//dy+fld2vbPhmEUO8TKbremoGjZdJKFCxde0fMPPfSQizIBAAAAAADebvTo0Xr77bdls9k0cuRIbdiwodjpYpdyONQLL7zgOBzq4oObKnI41JWoSIEnJydHO3fu1KJFi5SQkKDIyEh98MEHqlu3rktzKYtlBaLBgwdf9pQqwzAoEAEAAAAArnr58o5NqvPl+RzK402HQ7lbUFCQOnbsqI4dO6pPnz664447dMcdd2jz5s2qWrWqJTlYuiENq9kAAAAAAEBFedPhUFbp1q2bRowYoddee00zZszQU089Zcm4l7YQ7grs3r273GvHjh364IMPFB8fL0m65ZZbtGPHDv30009WpQkAAAAAALxE4eFQq1evVlxcnBo0aKCAgAA1aNBAcXFx+uSTTzR79uxy9/kpPBxq0qRJ6tSpk2rWrKmgoCC1bt1aTz75pNLS0tS7d2+LPlX57rrrLpmmqXfffdeyMb12k+olS5bowQcfVExMjL744osr2vEb1mCTagAAAAAud41tUv3t0j5qEOb5Tap/OZyjDvd+JOnq/V6vZd9++61uuukmhYSE6NSpU5aMadkMokt133336aGHHtK6descO4kDAAAAAABc63bu3Gn5mF5bIJKkAQMGyDRNzZ8/39OpAAAAAAAAuN2JEyf0wgsvyDAMtW3b1rJxLd2k+lLVq1dPkmcqZwAAAAAAuFq+aVe+Wf6x51bkAWts2LCh3D52u13Hjx9XSkqK5s2bp4MHD0oqOBHeKl5dINqzZ48k6cKFCx7OBAAAAAAA4NJ17979kvZVLtwqum/fvho+fLi70irBa5eYXbhwQZMnT5ZUsNs4AAAAAADA1cg0zQpf7du318yZM/X+++9bemCXZTOICmcDlaXolKrXX39dO3bskGEYGjhwoAUZAgAAAADgXvmmqXwvOEzcG3LwFUlJSeX28fPzU7Vq1dS0aVPVqFHDgqxKsqxA1LRp00t+xjRNdenSRU8++aQbMgIAAAAAAHCvmJgYT6dQIZYtMbuU6VSmaapWrVr6+9//ri+++EJVqlSxKk0AAAAAAACfY9kMonnz5pXbp+iUqhtuuEGVKlWyIDMAAAAAAKyRb9pl84ITxDjFDBezrEA0aNAgq4YCAAAAAADAJfDaU8wAAAAAAACuFenp6XryySfVqVMnhYaGqnLlyqpUqVKZl7+/ZfN6rJtB9Je//EWGYejFF19U/fr1K/TM4cOH9dRTT8kwDM2ZM8fNGQIAAAAA4F6cYuab/vWvf+npp5+WzWaT6aXfvWUFovnz58swDI0ZM6bCBaJTp045nqNABAAAAAAArjZr1qzR2LFjJUmGYahz5866+eabFRoaKj8/71nYZd1cJQAAAAAAAB8zffp0SVKtWrX00UcfKTo62rMJlcKrC0Tnz5+XJI65BwAAAABcE+ym6RUniNm9dJnTtSglJUWGYegf//iH1xaHJC/fpPqrr76SJNWtW9fDmQAAAAAAAFy6nJwcSVLXrl09nEnZ3DaD6J///KfT9998803VqVOnzGdzc3OVlZWljz76SIZheHWFDQAAAAAAoDQNGzbUTz/9pLy8PE+nUia3FYgmTJggwzCKvWeapt56660KxzBNU1WrVtW4ceNcnR4AAAAAAJbjFDPfc9ddd2nGjBn66quv1KVLF0+nUyq3LjEzTdNxGYYhwzCKvVfaVaVKFTVp0kQPPPCAkpOTdeONN7ozTQAAAAAAALcYO3asatWqpVdffVUHDhzwdDqlctsMIru9+KZbfn5+MgxDO3bsUNu2bd01LAAAAAAAXstm2mXzgk2qvSEHX9GgQQN9+OGH6tu3r2655Ra9/vrrio2N9XRaJVh2ilnjxo1lGIYCAgKsGhIAAAAAAMCj/vCHP0iSQkND9eOPP+quu+5SzZo11bJlSwUFBZX5rGEYWrt2rRVpWlcg+vnnn60aCgAAAAAAwCusW7eu2B7Npmnq+PHj2rJlS6nPFG7Rc/Hezu5kWYEIAAAAAABfZ5d3bFJtl+dz8BXdunWztNBzuSgQAQAAAAAAuMm6des8nUKFuLxAVLi27uJ1coXvXw4r19wBAAAAAAD4GpcXiAorYxdPnypcc2dewlQ6T6y5AwAAAADAXfJNu/K94AQxb8gB3sXlBaLS1tZdLWvuAAAAAAAAfI3bZhBV9H0AAAAAAAB4FptUAwAAAABgkXzTO04x84Yc4F38PJ0AAAAAAAAAPMuyApGfn5/8/f31ww8/VPiZrKwsx3MAAAAAAABwD0srL5dygpkrngMAAAAAwJvkm6ZsXnCCGEvMcDGvXmJWWBji9DMAAAAAAAD38eoC0dGjRyVJwcHBHs4EAAAAAADg2mX55j4VnQ109uxZJSQkSJKaN2/uzpQAAAAAALAEp5jBW7mtQNSsWTOn7//pT39S5cqVy3w2NzdXhw4dkt1ul2EYuuuuu9yRIgAAAAAAgKXOnz+vbdu26cCBA8rJyVFcXJyqV6/u6bTcVyD6+eefS7xnmqb27dt3SXE6d+6s8ePHuygrAAAAAAAA6+3du1fPPPOMli5dqgsXLjje3759u9q2bet4PWfOHM2aNUs1atTQ559/btm+zG4rEA0aNKjY6wULFsgwDPXp00c1a9Ys9TnDMFS1alXVr19ft9xyi/7whz+wSTUAAAAA4JqQb9qV7xWnmHk+B1+yZcsWxcbG6vjx48VOandW7+jTp48ee+wxXbhwQZ9//rnuuOMOS3J0W4Fo3rx5xV4vWLBAkvTSSy8Vq4wBAAAAAABcq06ePKm4uDgdO3ZM9evX17PPPqtbb71V7dq1c9o/LCxMPXv21EcffaTVq1df/QWiiz333HOSpDp16lg1JAAAAAAAgEclJCTo4MGDql27tpKTk9W4ceNyn7n99tv14YcfasuWLRZkWMDyAhEAAAAAAL7Kbrcr3+755V12L8jBV3z88ccyDEN/+9vfKlQckqTf/e53kqSsrCx3plaMn2UjAQAAAAAA+Jhdu3ZJkrp161bhZwr3bj516pQ7UnLK5TOI9uzZ4+qQklThKhsAAAAAAIC3OHfunCQpODi4ws+cOXNGklS1alW35OSMywtETZs2dXVIGYYhm83m8rgAAAAAAFgp3zSVX+QUK0/mAWuEhYVp37592rt3r2688cYKPbNt2zZJUv369d2ZWjEuX2JmmqZbLgAAAAAAgKtNVFSUJOnTTz+tUP/8/HwlJibKMAx17drVnakV4/IZRBcfbw8AAAAAAArky5TN9PwG0fliIoZV7rvvPi1fvlxz587VI488oo4dO5ba1263a8SIEfrhhx9kGIb+/Oc/W5anywtEgwYNcnVIAAAAAACAq1K/fv10yy236Ouvv9Ztt92mF154Qf3793e0G4ahgwcP6vPPP9e0adP03XffyTAM3XnnnerevbtleVp2zD0AAAAAAIAvWrlypbp166aMjAyNGjVKo0aNkmEYkqSbbrpJeXl5jr6maapdu3ZatGiRpTl6/TH3W7du1ciRIz2dBgAAAAAAV6xwk2pvuGCd2rVrKyUlRY899piqVKlSbM/l3Nxcx72/v7+GDRumr7/+2nHUvVW8cgZRdna23nnnHb3zzjvauXOnJCkhIcHDWQEAAAAAAFyeoKAgJSQkaMKECfrss8+UkpKiQ4cOKT8/X9ddd506duyonj17qkGDBh7Jz2sKRGfPntX777+vhQsXav369Y6Ty0zTdEy7AgAAAAAAuJpdd911uv/++3X//fd7OpViPFogMk1TX3zxhRYuXKiVK1cqJyfH8b4khYeHKz4+Xv369fNkmgAAAAAAuES+aVe+N5xi5gU5wLt4pED0/fffa8GCBVq8eLH2798v6beiUOPGjdW/f3/dc889+v3vf++J9AAAAAAAAHyKZQWiw4cPa9GiRVq4cKG+++47Sb8VhWrWrKkTJ07IMAxNnjxZAwYMsCotAAAAAACAK7Znzx63xG3cuLFb4l7MrQWi3Nxcffjhh1q4cKE+//xz5efnO4pCVapUUWxsrP785z8rNjZWgYGB7kwFAAAAAACPs3vJCWJ2L8jhWtO0aVOXxzQMQzabzeVxnXFLgWjTpk1auHChli1bplOnTkn6bbPpW2+9VX/+8581YMAA1ahRwx3DAwAAAAAAWMq8yotubikQdevWTYZhOL6ctm3b6oEHHtADDzxg2dQoAAAAAAAAq8ybN8/TKVwRty4xq1atmmbMmKHBgwe7cxgAAAAAAK4KNtMumxecIOYNOVxrBg0a5OkUroifuwKbpqkzZ85oyJAhat++vSZPnqzs7Gx3DQcAAAAAAIDL5JYC0caNG/XII4+oRo0aMk1TO3bs0NNPP60mTZqoR48emjt3rmNvIgAAAAAAAHiWWwpE0dHRSkxM1IEDB7R06VLFxsaqUqVKstvt2rBhg4YOHap69eqpf//++uijjyzbkRsAAAAAAE/K//UUM2+4YI38/Hxt2LBBGzZs0MmTJ8vtf+LECUd/K7ltiZkkBQQEqH///lq1apX27dunV199Ve3bt5dpmjp//ryWL1+uvn37qm7duu5MAwAAAAAAwCO++OILde/eXf369VNAQEC5/QMCAtSvXz/16NFDSUlJFmRYwK0FoqLCwsL05JNPKjU1VWlpafrb3/6mevXqyTRNHT9+XIZhSJL+9re/6YknntDGjRutSg0AAAAAAMAt3nvvPUlS//79FRgYWG7/oKAg3XvvvTJNU0uXLnV3eg6WFYiKuuGGGzR16lTt3btXn3zyiQYOHKiqVavKNE398ssvev3119W9e3fVr19fjz76qNauXeuJNAEAAAAAcCm7aSrftHv8srPEzDLbtm2TYRj6wx/+UOFnevToIUnasmWLu9IqwSMFIsfgfn668847tXjxYh04cECJiYm69dZbJRWcgnbw4EHNmjVLd9xxhyfTBAAAAAAAuCyFJ7o3bdq0ws80adJEkrRv3z53pOSURwtERVWrVk2PPPKI1q9fr6ysLE2YMEEtWrSQaZoyqWwCAAAAAICrUE5OjiRdUm2jsK+VJ8B7TYGoqCZNmugf//iHfvzxR23cuFFDhw71dEoAAAAAAFwxT59cxilm1gsLC5MkZWRkVPiZwr7XXXedW3JyxisLREVFR0dr5syZnk4DAAAAAADgkkVGRso0TS1cuLDCz8yfP1+GYeimm25yY2bFeX2BCAAAAAAA4Gp1zz33SJLWrl2rV199tdz+r776qr788ktJBSefWYUCEQAAAAAAFrGZdq+53OnUqVN69913NWbMGMXExKhFixaqUaOGAgICVKdOHXXv3l2TJ0/W0aNHKxRvzZo1io+PV3h4uKpUqaLw8HDFx8drzZo1Fc4pJydHU6ZMUVRUlEJDQxUSEqKIiAiNHTtWe/bsudyPWq57771XN954o0zT1Pjx49WvXz9t3LhRFy5ccPSx2WzauHGj4uPjNX78eBmGoRtuuEF//vOf3ZbXxQyTHaDhItnZ2WrUqFHBi0q3SUagZxMCAAAAcPUzz0n5ayVJe/fuVXh4uIcTunRFfytNfq2dQq8L8HBG0rGjeRo/arsk93yvX3zxhW6//fZy+9WuXVv//ve/Sz293DRNjRgxQomJiaXGGDZsmGbOnCnDMErtk5WVpV69emnnzp1O22vUqKHFixcrNja23Jwvx88//6zo6Gjt37/fkWflypUVGhoqwzB09OhRR8HINE01aNBAmzZtcpxmZgVmEAEAAAAAYBG7F2xOnW+aslswV6RRo0Z66KGHNGPGDC1fvlzJycn66quvtHTpUvXv31+VKlXSkSNH1KdPH6WlpTmN8cwzzziKQx07dtSSJUu0ZcsWLVmyRB07dpQkJSYm6tlnny01jzNnzqh3796O4tDQoUO1du1aff3113rppZcUEhKikydPqn///qXmcaWaNGmi1NRUxcXFSSooAuXl5enAgQPav3+/8vLyHCeXxcfH67///a+lxSGJGURwIWYQAQAAAHC5a2wG0SszblAtL5hBdPxonv7+xA5J7vle8/PzValSpTL7rFy5Un379pVUUBT54IMPirVnZmYqIiJCNptNnTp10oYNGxQY+NvvzJycHMXExCglJUX+/v7KyMhQ8+bNS4wzYcIEPf/885KkyZMna9y4ccXak5OT1a1bN9lsNvXo0cOx/4+77Ny5U5988olSU1N15MgRSQUzqW666Sb16tVLLVu2dOv4pfH3yKgAAAAAAOCaVV5xSJLuvvtutWnTRhkZGdqwYUOJ9mnTpslms0mSEhISihWHJCkoKEgJCQnq0qWLbDabpk+froSEhGJ9Lly4oBkzZkiSIiIiNGbMmBLjdOnSRUOGDNGsWbOUlJSkbdu26eabb67wZ71UrVu3VuvWrd0W/3KxxAwAAAAAAIvky6580wsuuXeT6ooKDg6WJJ0/f77Y+6Zp6sMPP5QktWnTRp07d3b6fOfOnR3FlpUrV+riRVLr1q3TiRMnJEmDBg2Sn5/zMsjgwYMd98uXL7/kz3EtoEAEAAAAAAAsl56erm+//VZSQRGoqN27d2vfvn2SpJiYmDLjFLZnZ2fr559/Lta2cePGEv2c6dSpk6NYtWnTpgrlf61hiRkAAAAAAD5s//795fZx1R5FOTk52rdvnz7++GNNnjxZ+fn5kqQnnniiWL/09HTH/cXFo4sVbU9PT1fTpk0vOY6/v7+aN2+utLS0Ys9cij179jjuGzdu7PT9y1E0ljtRIAIAAAAAwCKFp4h5WtEcoqKiyu1/JedbzZ8/Xw8//HCp7WPHjtUDDzxQ7L29e/c67ssrTjkOS7rouaKvg4ODVbNmzXLjpKWl6fDhw8rNzVWVKlXK7H+xwsKUYRiOvZOKvn85Lo7lThSIAAAAAACA5Tp06KCZM2fq97//fYm206dPO+5DQkLKjFO4NEwqONLeWZzyYjiLc6kFotKKaFfL4fEUiAAAAAAA8GFbtmxR/fr13Rb/7rvvVqdOnSRJ586dU1ZWlt577z2tWLFCDzzwgKZPn67evXsXe6boptUBAQFlxi9ayDl37pzTOOXFKC9ORcybN++S3vc2FIgAAAAAALCI3TSVb3r+BDF7kVkt9evXd9keQ87UrFmz2PKuyMhIDRw4UO+8844GDRqkuLg4zZkzp9hJYlWrVnXc5+XllRk/NzfXcR8YGFisrTBOeTHKi1MRgwYNuqT3vQ2nmAEAAAAAAMs9+OCD6t+/v+x2ux5//HEdP37c0VatWjXH/cXLxi529uxZx/3FS8kK45QXo7w4voACEQAAAAAA8Ii4uDhJBcWZTz/91PF+0RlN2dnZZcYoujF10Q2ri8Y5e/asTpw4UaE4YWFhl7z/UFkWLlyohQsX6tSpUxV+5syZM47nrEKBCAAAAAAAi9hMu9dc3iAsLMxx/7///c9x37ZtW8d9RkZGmTGKtkdERBRrq2gcm82mrKwspzGu1ODBg/Xwww+XW+gq6uDBgxo8eLD+8pe/uDSXslAgAgAAAAAAHrFv3z7HfdFlXU2bNlWDBg0kSevXry8zxoYNGyRJDRs2VJMmTYq1de3a1XFfVpyUlBTHErPo6OiKJW8BK09Ao0AEAAAAAAA8YtmyZY77du3aOe4Nw3AsP8vIyNDmzZudPr9582bHzKC4uDgZhlGsvXv37qpRo4YkacGCBaUWXObPn++479u376V/EBez2WySJH9/684Wo0AEAAAAAIBF8k3Tay53mj9/frGj6p2ZNm2aPvnkE0lSkyZNis32kaTRo0c7CiQjR44scfT8uXPnNHLkSEkFhZTRo0eXGCMgIECjRo2SJKWnp2vq1Kkl+iQnJ2vOnDmSpJiYGEVGRlbgE7rXzp07JUmhoaGWjckx9wAAAAAAwKUmTJigMWPGqF+/furatauaN2+ukJAQnT59Wtu3b9eiRYv01VdfSSoo4rz99tslZsu0atVKY8eO1SuvvKKUlBRFR0frqaeeUvPmzZWVlaVJkyYpNTVVkjRu3Di1bNnSaS7jxo3T0qVL9eOPP2r8+PHKzMzUwIEDFRgYqKSkJL388suy2WwKDAzU9OnTr/izFy55u9jWrVt15MiRMp/Nzc1VVlaWpk6dKsMw1KFDhyvOp6IM08oFbbimZWdn/7ZjfKXbJCPQswkBAAAAuPqZ56T8tZIKTpkqerrV1aLob6WnX22pmqGVPZyRdOLYBU0cs0uSe77XJk2aFNt0ujTh4eGaO3eubr/9dqftdrtdQ4cO1dy5c0uNMWTIECUmJsrPr/RFUpmZmYqNjdWuXbuctlevXl2LFi1S7969y825PH5+fsWWuhWWXS5e/lYW0zRlGIY++OAD3X333VecU0UwgwgAAAAAAIvYTbvyveAEMbubc1i7dq2++OILJSUlKT09XQcPHtTRo0dVtWpV1a1bVx06dFDv3r01YMAABQUFlRrHz89Pc+bMUb9+/ZSYmOiYhVO7dm1FRkZq+PDh6tmzZ7n5tGjRQqmpqXrjjTe0bNkyZWZmKi8vT40aNVJsbKyeeOIJXX/99S77/M7m4lzK/Jzw8HD93//9n2XFIYkZRHAhZhABAAAAcLlrbAbRU1Obq4YXzCA6eeyCJo0tONb9av1evVXR09JM09Qf/vAHGYahOXPmqGnTpqU+ZxiGqlatqvr16//229pCzCACAAAAAABwkZiYmBLvmaapqKgotW3b1gMZVQwFIgAAAAAALGLFCWIVzQPW2L17twzDUMOGDT2dSpk45h4AAAAAAMBNmjVrpmbNmunVV1/1dCplokAEAAAAAADgJpUrV5Zp/v/27j0uyjrv//h7AEEEz8cIT6konXbdRcIbFa3WNrVI2qxt0ygXqy3LHmmnLTfv7aCmZdmdRmK4VmaPSrsT11rPR1ZRN7JAxUQl7VYLUAHBYa7fH/yYQIYZwGFm4Ho9H4/pccH1vT7XZ0a81E+f7/draOjQod5OxSmmmAEAAAAA4CHlNpusNu/vYlbuAzmYRVhYmI4cOSJ/f39vp+IUHUQAAAAAAACNZNiwYZKkPXv2eDkT5ygQAQAAAADgIeX6ZaFqr768/UGYyOTJk+Xv7685c+bozJkz3k6nVqYtEO3Zs0cvv/yybr75ZnXv3l1BQUEKDQ1VRESEEhMTtWXLlnrFW7NmjRISEhQeHq6goCCFh4crISFBa9asqXOM4uJivfrqq4qOjlaHDh0UGhqqyMhITZ06VUePHq1znG+//VYPPvig+vbtq+DgYHXu3FnDhg3TO++8I6vVWq/3BQAAAAAAGu63v/2t5s+fryNHjiguLk7bt2/3dkoOWQzDfHvbxcXFafPmzS7HjR8/XosWLVJgYGCtYwzD0IMPPqjk5ORax0yaNEkLFy6UxWKpdcyhQ4c0evRo7d+/3+H5tm3b6sMPP9SoUaOc5pySkqKHH35YpaWlDs/HxMRo1apV6tixo9M4DZGXl6fu3btXfOF/g2QJdvs9AAAAAJiMUSKVr5MkHTt2TOHh4V5OqP6q/lvp0Vm91Ka995cDPpNv1ZtP5Upqup9rU3H//fdLknbu3KnvvvtOFotF3bt317XXXqv27ds7XZvIYrEoJSXFI3l6/6fSC3744QdJFQtF3XHHHRo6dKh69Oih8vJy7dixQ3PnztUPP/ygpUuXymq16sMPP6w11nPPPWcvDg0cOFBPPvmk+vTpo0OHDmn27Nnau3evkpOT1blzZ7344osOY5w7d05jxoyxF4eSkpJ01113KTg4WBs2bNArr7yiwsJC3XHHHdqxY4euvfZah3G+/PJLTZo0STabTV27dtVf//pXXXfddfr555/17rvv6rPPPlN6eroSEhK0YcMG+fmZtoEMAAAAALyi3LCp3PD+AtG+kINZpKam2htGLBaLDMPQ0aNHdezYMafXGYbh0QKRKTuIxowZowkTJuj22293WKk7ffq0YmNjdeDAAUnS5s2bHW5Hl5OTo8jISFmtVkVFRWnz5s0KDv6la6a4uFhxcXHKyMhQQECAsrOz1adPnxpxXnjhBc2YMUOSNHv2bE2bNq3a+R07dmjYsGGyWq0aMWKE1q9fXyOG1WpVZGSkcnJy1KZNG+3Zs6fGvR5++GG9/fbbkqQlS5ZowoQJrj6qeqGDCAAAAIDbNbMOoodn9vCZDqL/ebpiKZOm+rk2Fb169XI6o8iVw4cPuzGb2pmyhWTVqlUaN25crW1cnTp10ty5c+1ff/LJJw7Hvf766/Y1febPn1+tOCRJrVq10vz58yVVFHDmzZtXI8aFCxf0xhtvSJIiIyP1xBNP1BgzePBgTZw4UZK0YcMG7d69u8aYFStWKCcnR5L0zDPPOCxEvfrqq2rfvr39GAAAAAAANK7c3FwdPny4wS9PMWWBqC6GDx9uPz506FCN84Zh6PPPP5ckDRgwQDExMQ7jxMTEqH///pKklStX6uKGrY0bN6qgoECSdO+999Y67SsxMdF+/Nlnn9U4v3LlSodjq2rVqpXGjRsnSdq3b58OHjzocBwAAAAAoHHYvL172f9/2cw3mQguUCCqRVlZmf3YUdHm8OHD9rWM4uLinMaqPJ+Xl6fc3Nxq56ruluYsTlRUlEJCQiRJW7durXG+Mk7//v3VrVs3l7nUFgcAAAAAAJgPBaJabNq0yX48YMCAGuezsrKcnq+q6vmq19UnTkBAgH3a2MUxzp07p7y8vEvOBQAAAAAAmJP3V8byQTabTTNnzrR/XTktq6qqq427WszLvnDzRddV/TokJETt2rVzGSczM1OnTp1SaWmpgoKCJFV0JlVOXbuUXFypLELV5sSJE/WKBwAAAABmYzVssvrADmK+kIOZlZeXKz8/XyUlJTWWorlYjx49PJITBSIHXn/9de3cuVOSNHbsWEVFRdUYc/bsWftxaGio03iVU8Okim4fR3FcxXAUp7JA5K5cXKlaXAIAAAAAAHV3+vRpzZ8/XytXrtR3330nm811kc5isdg3x2psFIgusmnTJj399NOSpC5dumjBggUOx50/f95+HBgY6DRmZSFHkkpKShzGcRXDWRx35QIAAAAAANxv+/btSkhI0KlTp1x2DHkLBaIqvv32W40dO1ZWq1VBQUH6+OOP1bVrV4djW7ZsaT+uuqC1I6Wlpfbj4OBgh3FcxXAWx125uOJqStqJEycUHR1dr5gAAAAAYCaVu4h5my/kYBY//fST4uPj9dNPPyk0NFR//vOf1a5dO73wwguyWCxatGiR8vPzlZGRoc8//1znz59XbGysJk6c6NE8KRD9f4cPH9bIkSOVn58vf39/LVu2zOmuYq1bt7Yfu5qqVVRUZD++eApYZZy6TPeqLY67cnHF1fpGAAAAAACgurfeeks//fSTgoKCtGPHDl111VX69ttv9cILL0iS7rvvPvvYH3/8UXfffbc2bdqkwYMHa9asWR7Lk13MJB0/flw33nijjh8/LovFosWLF2vs2LFOr6laLHG1eHPVzpuL1/GpjFNUVKSCgoI6xencuXO1qWLuygUAAAAAALjXP//5T1ksFt1///266qqrnI7t1q2b0tLS1KdPH82ZM0fr16/3UJYUiHT69Gn97ne/0/fffy9Jmj9/viZMmODyuiuvvNJ+nJ2d7XRs1fORkZENimO1WnXo0CGHMUJDQ+3FnkvJBQAAAADQuGyGTeU+8LKxi5nH5OTkSJJuvPFG+/csFov9uLy8vNr44OBgPf744zIMQwsXLvRMkjJ5gaiwsFA33XSTvvvuO0nSzJkz9fDDD9fp2t69eyssLExSxcLWzmzevFmSdPnll6tXr17Vzg0ZMsR+7CxORkaGfXpYbGxsjfOVcfbv368ff/yx1jhV7+EoDgAAAAAAcJ8zZ85Iknr27Gn/XtW1hKvuTF6pcjf1f//7342c3S9MWyAqLi7W6NGjtWfPHknSX//6Vz311FN1vt5isSg+Pl5SRVdOenq6w3Hp6en2rp34+PhqVUJJGj58uNq2bStJWrJkSa2rmaemptqPHU1/u+222xyOraq4uFgff/yxpIrOpYiICIfjAAAAAACAe1Su/1t1u/oOHTrYj3Nzc2tcU7lb+cmTJxs3uSpMWSAqKyvT2LFjtW3bNknSY489phdffLHecaZMmaKAgIp1vidPnlxj2/iSkhJNnjxZkhQQEKApU6bUiBEYGKhHH31UkpSVlaU5c+bUGLNjxw6lpKRIkuLi4jRo0KAaY8aOHas+ffpIkl555RX7dLSqpk2bpvz8fPsxAAAAAMCzyo1fdjLz7svbn4R59O3bV5J09OhR+/fatWunbt26SZI2bNhQ45rt27dLkkJCQjyQYQVTFoj++Mc/6quvvpIkXX/99Zo4caL27dtX6+vAgQMO40RERGjq1KmSKqaAxcbGavny5crIyNDy5csVGxurjIwMSRUFmX79+jmMM23aNHs3z5NPPqkHHnhAGzZsUHp6ul555RWNHDlSVqtVwcHBmjdvnsMYLVq00Jtvvik/Pz+dOXNGsbGxeuutt7Rz5059+eWX+sMf/qC3335bUsV0tPHjxzf48wMAAAAAAHVz3XXXSZJ27dpV7fu///3vZRiGZs+eXa3usHPnTs2ePVsWi8Vhg0hjsRi1zWlqxi6e5uVKz549HbZ8SZLNZlNSUpIWL15c6/UTJ05UcnKy/Pxqr8fl5ORo1KhROnjwoMPzbdq00QcffKAxY8Y4zfXdd9/VI488orKyMofno6OjlZaWpk6dOjmN0xB5eXm/7Izmf4NkCXb7PQAAAACYjFEila+TVLErc9VdnJuKqv9WGv/3bgpt7+/ljKRz+eVa+nzF+rVN9XNtKlatWqVbb71Vffr0qfZv/n379uk3v/mNysvL5e/vr1/96lcqLi7WgQMHVF5eLovForS0NP3+97/3SJ6m7CByJz8/P6WkpCgtLU3x8fEKCwtTYGCgwsLCFB8fr9WrV2vRokVOi0NSRcvZ3r17NWvWLEVFRaldu3Zq1aqV+vfvr8cff1yZmZkui0OSlJSUpN27dyspKUlXXHGFWrZsqY4dO2rIkCFasGCBtm3b1ijFIQAAAACAa97evazqC55x0003acKECYqJidHhw4ft37/66qu1YMEC+fv7y2q1avfu3crKyrLvavbCCy94rDgkmbSDCI2DDiIAAAAAbtfMOoju/u8uPtNB9OH0igWQm+rn2lzs379fqamp+vbbb2W1WtWvXz+NHz/evpOZpwR49G4AAAAAAACw69+/v1555RVvp0GBCAAAAAAATyk3bLIa9VsXt7HyQOMpLS1VSkqK/vnPf+rIkSMqLy9XWFiYRowYoQceeEAdO3b0doo1UCACAAAAAABwk4MHD+rmm2+utt6QJGVnZ2v9+vV69dVX9dlnn2nEiBFeytAxCkQAAAAAAHhIuQyV+8BSwOXyfg7NUWlpqW699VZ9//33tY4pLCxUQkKCvvnmG59a+4ldzAAAAAAAANzg/fff1/79+2WxWBQdHa1//etfOnv2rEpKSvTvf/9bt956qyTpzJkzmjt3rpezrY4CEQAAAAAAgBusXLlSkhQZGalNmzbphhtuUEhIiIKCgjRo0CCtXLlSY8aMkWEYWrFihXeTvQgFIgAAAAAAPKTcsPnMC+739ddfy2KxaMqUKQoKCnI45tlnn5UkHTt2TIWFhZ5MzykKRAAAAAAAAG5w+vRpSdKvf/3rWsdUPffTTz81ckZ1R4EIAAAAAADADc6fPy9JatWqVa1jWrZsWWO8L2AXMwAAAAAAPMRm+MYuZjYfyAG+hQ4iAAAAAAAAk6ODCAAAAAAAwI3efvttdenSxS3jpk+f7q60nKJABAAAAACAh1gNQ1Yf2EHMyhSzRrVgwQKn5y0WS53GSRSIAAAAAAAAmhzDjcW3ykKSJ1AgAgAAAAAAcIMNGzZ4O4UGo0AEAAAAAICHlPvILma+kENzFBcX5+0UGoxdzAAAAAAAAEyOAhEAAAAAAIDJMcUMAAAAAAAPsRk2lfvA7C6bD+ykBt9CBxEAAAAAAIDJUSACAAAAAAAwOaaYAQAAAADgIexiBl9FBxEAAAAAAIDJUSACAAAAAAAwOaaYAQAAAADgIeWGTVYfmN1Vzi5muAgdRAAAAAAAACZHgQgAAAAAAMDkmGIGAAAAAICHsIsZfBUdRAAAAAAAACZHBxEAAAAAAB5SLsMnFoguFx1EqI4OIgAAAAAAAJOjQAQAAAAAAGByTDEDAAAAAMBDbDZD5d6fYSabjSlmqI4OIgAAAAAAAJOjQAQAAAAAAGByTDEDAAAAAMBDyg2byg2Lt9NQucEUM1RHBxEAAAAAAIDJUSACAAAAAAAwOaaYAQAAAADgIVbDJn8fmGJmZYoZLkIHEQAAAAAAgMlRIAIAAAAAAG63Z88evfzyy7r55pvVvXt3BQUFKTQ0VBEREUpMTNSWLVvqFW/NmjVKSEhQeHi4goKCFB4eroSEBK1Zs6bOMYqLi/Xqq68qOjpaHTp0UGhoqCIjIzV16lQdPXq0vm+xWbEYBn1lcI+8vDx179694gv/GyRLsHcTAgAAAND0GSVS+TpJ0rFjxxQeHu7lhOqv6r+VfjXVosC23p9iVlZo6Os5FeWAxvhc4+LitHnzZpfjxo8fr0WLFikwMLDWMYZh6MEHH1RycnKtYyZNmqSFCxfKYqn9sz106JBGjx6t/fv3Ozzftm1bffjhhxo1apTLvJsjOogAAAAAAIBb/fDDD5KksLAwPfbYY/rkk0+0c+dO7dixQ6+99pouv/xySdLSpUuVmJjoNNZzzz1nLw4NHDhQy5Yt086dO7Vs2TINHDhQkpScnKznn3++1hjnzp3TmDFj7MWhpKQkrVu3Ttu3b9dLL72k0NBQFRYW6o477lBmZualvv0miQ4iuA0dRAAAAADcjg6iRtHYHURjxozRhAkTdPvtt8vf37/G+dOnTys2NlYHDhyQJG3evFlDhw6tMS4nJ0eRkZGyWq2KiorS5s2bFRz8y781i4uLFRcXp4yMDAUEBCg7O1t9+vSpEeeFF17QjBkzJEmzZ8/WtGnTqp3fsWOHhg0bJqvVqhEjRmj9+vWX9P6bIjqIAAAAAADwkHLDULlh84FX4/aKrFq1SuPGjXNYHJKkTp06ae7cufavP/nkE4fjXn/9dVmtVknS/PnzqxWHJKlVq1aaP3++JMlqtWrevHk1Yly4cEFvvPGGJCkyMlJPPPFEjTGDBw/WxIkTJUkbNmzQ7t27XbzD5ocCEQAAAAAA8Ljhw4fbjw8dOlTjvGEY+vzzzyVJAwYMUExMjMM4MTEx6t+/vyRp5cqVunii1MaNG1VQUCBJuvfee+Xn57gUUnWq22effVbXt9FsUCACAAAAAAAeV1ZWZj92VLQ5fPiwfS2juLg4p7Eqz+fl5Sk3N7fauaq7pTmLExUVpZCQEEnS1q1bnSffDAV4OwEAAAAAAMzCZkg2w/trENmqdNmcOHHC5fjGWPtp06ZN9uMBAwbUOJ+VleX0fFVVz2dlZal37971jhMQEKA+ffooMzOz2jVmQYEIAAAAAAATi46OdjnG3ftb2Ww2zZw50/71uHHjaow5duyY/dhVgcq+YdJF11X9OiQkRO3atXMZJzMzU6dOnVJpaamCgoKcjm9OmGIGAAAAAAA86vXXX9fOnTslSWPHjlVUVFSNMWfPnrUfh4aGOo1XOTVMqtjS3lEcVzFcxWnu6CACAAAAAMBTDItk8/4UMxn2/2jnzp267LLLPHbrTZs26emnn5YkdenSRQsWLHA47vz58/bjwMBApzGrdvqUlJQ4jOMqhqs4zR0FIgAAAAAATOyyyy5rlDWGHPn22281duxYWa1WBQUF6eOPP1bXrl0djm3ZsqX9uOqC1o6Ulpbaj4ODgx3GcRXDVZzmjilmAAAAAACg0R0+fFgjR45Ufn6+/P39tWzZMqe7irVu3dp+7Gq6V1FRkf344qlklXHqMmXMWZzmjgIRAAAAAAAeYtgsPvPypOPHj+vGG2/U8ePHZbFYtHjxYo0dO9bpNVW7mvLy8pyOrbowddUFq6vGKSoqUkFBQZ3idO7c2VQLVEsUiAAAAAAAQCM6ffq0fve73+n777+XJM2fP18TJkxwed2VV15pP87OznY6tur5yMjIBsWxWq06dOiQwxhmQIEIAAAAAAAP8XbXkKc7iAoLC3XTTTfpu+++kyTNnDlTDz/8cJ2u7d27t8LCwiRVLGztzObNmyVJl19+uXr16lXt3JAhQ+zHzuJkZGTYp5jFxsbWKcfmhAIRAAAAAABwu+LiYo0ePVp79uyRJP31r3/VU089VefrLRaL4uPjJVV0/qSnpzscl56ebu8Mio+Pl8VSvfg1fPhwtW3bVpK0ZMkSGYbhME5qaqr92NX0t+aIAhEAAAAAAHCrsrIyjR07Vtu2bZMkPfbYY3rxxRfrHWfKlCkKCKjYgH3y5Mk1tp4vKSnR5MmTJUkBAQGaMmVKjRiBgYF69NFHJUlZWVmaM2dOjTE7duxQSkqKJCkuLk6DBg2qd65NHdvcAwAAAADgKTY/jy8Q7TgPQ1J5o4X/4x//qK+++kqSdP3112vixInat29freMDAwMVERFR4/sRERGaOnWqZs6cqYyMDMXGxuqpp55Snz59dOjQIc2aNUt79+6VJE2bNk39+vVzGH/atGlavny5Dhw4oCeffFI5OTm66667FBwcrA0bNujll1+W1WpVcHCw5s2bd+kfQBNkMWrrrQLqKS8v75fV4v1vkCzB3k0IAAAAQNNnlEjl6yRV7DBVdWerpqLqv5UGPNxCLdp4v0B04Yyh7P+5IKlxPteLp3m50rNnT+Xm5jo8Z7PZlJSUpMWLF9d6/cSJE5WcnCw/v9onSuXk5GjUqFE6ePCgw/Nt2rTRBx98oDFjxtQr9+aCKWYAAAAAAMBn+fn5KSUlRWlpaYqPj1dYWJgCAwMVFham+Ph4rV69WosWLXJaHJKkvn37au/evZo1a5aioqLUrl07tWrVSv3799fjjz+uzMxM0xaHJDqI4EZ0EAEAAABwu+bWQfRQoO90EC0ok9R0P1e4Fx1EAAAAAAAAJkeBCAAAAAAAwOTYxQwAAAAAAA8xDItP7GLGYjO4GB1EAAAAAAAAJkeBCAAAAAAAwOSYYgYAAAAAgIcYNh+ZYmbzdgbwNXQQAQAAAAAAmBwFIgAAAAAAAJNjihkAAAAAAB5i2OQjU8zYxgzV0UEEAAAAAABgchSIAAAAAAAATI4pZgAAAAAAeIrNr+Llbexihov4wE8lAAAAAAAAvIkCEQAAAAAAgMkxxQwAAAAAAA8xDItv7GJmeD8H+BY6iAAAAAAAAEyOAhEAAAAAAIDJMcUMAAAAAAAPMWw+MsXMB3KAb6GDCAAAAAAAwOToIAIAAAAAwEPoIIKvooMIAAAAAADA5CgQAQAAAAAAmBxTzAAAAAAA8BCmmMFX0UEEAAAAAABgchSIAAAAAAAATI4pZgAAAAAAeIrNr+LlbTZvJwBf4wM/lQAAAAAAAPAmCkQAAAAAAAAmxxQzAAAAAAA8xDB8Ywcxw/B2BvA1dBABAAAAAACYHAUiAAAAAAAAk2OKGQAAAAAAnmKz+MQUM/lCDvApdBABAAAAAACYHAUiAAAAAAAAk2OKGQAAAAAAHmL4yBQzX8gBvoUOIgAAAAAAAJOjQAQAAAAAAGByTDEDAAAAAMBTbBbf2EHMF3KAT6GDCAAAAAAAwOQoEAEAAAAAAJgcU8wAAAAAAPAQw/CTYfN+r4ZhGN5OAT7G+z+VAAAAAAAA8CrTFohOnjypVatWafr06br55pvVqVMnWSwWWSwWJSYm1jvemjVrlJCQoPDwcAUFBSk8PFwJCQlas2ZNnWMUFxfr1VdfVXR0tDp06KDQ0FBFRkZq6tSpOnr0aJ3jfPvtt3rwwQfVt29fBQcHq3Pnzho2bJjeeecdWa3Wer83AAAAAIB7GDaLz7yAqkw7xaxr165uiWMYhh588EElJydX+/4PP/ygFStWaMWKFZo0aZIWLlwoi6X234CHDh3S6NGjtX///mrfz87OVnZ2thYtWqQPP/xQo0aNcppPSkqKHn74YZWWltq/d/78eW3ZskVbtmxRamqqVq1apY4dOzbg3QIAAAAAgObItB1EVXXv3l0jR45s0LXPPfecvTg0cOBALVu2TDt37tSyZcs0cOBASVJycrKef/75WmOcO3dOY8aMsReHkpKStG7dOm3fvl0vvfSSQkNDVVhYqDvuuEOZmZm1xvnyyy81adIklZaWqmvXrnrzzTf173//W//85z+VkJAgSUpPT1dCQoJsNluD3i8AAAAAAGh+TNtBNH36dA0aNEiDBg1S165dlZubq969e9crRk5OjmbPni1JioqK0ubNmxUcHCxJGjRokG699VbFxcUpIyNDs2bN0n333ac+ffrUiDNnzhxlZ2dLkmbPnq1p06bZzw0ePFgjRozQsGHDVFxcrClTpmj9+vU1YlitVj3yyCOy2Wxq06aNtm3bVu1ev//97/Xwww/r7bff1ubNm/X+++9rwoQJ9Xq/AAAAAIBL4yvTu3whB/gW03YQzZgxQ2PGjLmkqWavv/66fU2f+fPn24tDlVq1aqX58+dLqijgzJs3r0aMCxcu6I033pAkRUZG6oknnqgxZvDgwZo4caIkacOGDdq9e3eNMStWrFBOTo4k6ZlnnnFYiHr11VfVvn17+zEAAAAAAIBk4gLRpTIMQ59//rkkacCAAYqJiXE4LiYmRv3795ckrVy5ssZWghs3blRBQYEk6d5775Wfn+NfkqoLZ3/22Wc1zq9cudLh2KpatWqlcePGSZL27dungwcPOhwHAAAAAADMhQJRAx0+fFg//PCDJCkuLs7p2MrzeXl5ys3NrXZuy5YtNcY5EhUVpZCQEEnS1q1ba5yvjNO/f39169bNZS61xQEAAAAANCKbxXdeQBWmXYPoUmVlZdmPBwwY4HRs1fNZWVnV1jqqa5yAgAD16dNHmZmZ1a6RKha5zsvLa1Au9VF5j9qcOHGiXvEAAAAAAIBvoEDUQMeOHbMfh4eHOx3bvXt3h9dV/TokJETt2rVzGSczM1OnTp1SaWmpgoKCJFUUbiqnrl1KLq5UvRYAAAAAADQfFIga6OzZs/bj0NBQp2Mrp4ZJFd0+juK4iuEoTmWByF25AAAAAAAal2HzjR3EDJu3M4CvoUDUQOfPn7cfBwYGOh1bWciRpJKSEodxXMVwFsddubjiquPoxIkTio6OrldMAAAAAADgfRSIGqhly5b247KyMqdjS0tL7cfBwcEO47iK4SyOu3JxxdX0NQAAAAAA0DRRIGqg1q1b249dTdUqKiqyH188BawyTl2me9UWx125AAAAAAAal2H4ybB5f0Nxw/B+DvAt/EQ0UNVuGle7e1WdmnXxQs+VcYqKilRQUFCnOJ07d642VcxduQAAAAAAAHOiQNRAV155pf04Ozvb6diq5yMjIxsUx2q16tChQw5jhIaG2os9l5ILAAAAAAAwJwpEDdS7d2+FhYVJkjZt2uR07ObNmyVJl19+uXr16lXt3JAhQ+zHzuJkZGTYp4fFxsbWOF8ZZ//+/frxxx9rjVP1Ho7iAAAAAAAaj2Gz+MwLqIoCUQNZLBbFx8dLqujKSU9PdzguPT3d3rUTHx8vi6X6b8Lhw4erbdu2kqQlS5bIMAyHcVJTU+3HY8eOrXH+tttuczi2quLiYn388ceSKjqXIiIiHI4DAAAAAADmQoHoEkyZMkUBARXrfE+ePLnGtvElJSWaPHmyJCkgIEBTpkypESMwMFCPPvqoJCkrK0tz5sypMWbHjh1KSUmRJMXFxWnQoEE1xowdO1Z9+vSRJL3yyiv26WhVTZs2Tfn5+fZjAAAAAAAAycS7mG3dulU5OTn2r0+fPm0/zsnJqdGFk5iYWCNGRESEpk6dqpkzZyojI0OxsbF66qmn1KdPHx06dEizZs3S3r17JVUUZPr16+cwl2nTpmn58uU6cOCAnnzySeXk5Oiuu+5ScHCwNmzYoJdffllWq1XBwcGaN2+ewxgtWrTQm2++qVtuuUVnzpxRbGysnnvuOUVHRys/P1/vvvuuPv30U0kV09HGjx9fj08LAAAAAOAOvjK9yxdygG+xGLXNaWrmEhMTtWTJkjqPr+1jstlsSkpK0uLFi2u9duLEiUpOTpafX+0NWzk5ORo1apQOHjzo8HybNm30wQcfaMyYMU7zfPfdd/XII4+orKzM4fno6GilpaWpU6dOTuM0RF5e3i87o/nfIFmC3X4PAAAAACZjlEjl6yRV7MpcdRfnpqLqv5W63RiugGDv92pYS6z6cW3FLthN9XOFezHF7BL5+fkpJSVFaWlpio+PV1hYmAIDAxUWFqb4+HitXr1aixYtclockqS+fftq7969mjVrlqKiotSuXTu1atVK/fv31+OPP67MzEyXxSFJSkpK0u7du5WUlKQrrrhCLVu2VMeOHTVkyBAtWLBA27Zta5TiEAAAAAAAaLpM20EE96ODCAAAAIDbNbcOouu7+04H0fpjkpru5wr3ooMIAAAAAADA5CgQAQAAAAAAmJz3+9oAAAAAADALH9nFTL6QA3wKHUQAAAAAAAAmRwcRAAAAAAAeYhi+0UFkGN7PAb6FDiIAAAAAAOB2J0+e1KpVqzR9+nTdfPPN6tSpkywWiywWixITE+sdb82aNUpISFB4eLiCgoIUHh6uhIQErVmzps4xiouL9eqrryo6OlodOnRQaGioIiMjNXXqVB09erTeOTUndBABAAAAAAC369q1q1viGIahBx98UMnJydW+/8MPP2jFihVasWKFJk2apIULF8piqb0z6tChQxo9erT2799f7fvZ2dnKzs7WokWL9OGHH2rUqFFuybupoYMIAAAAAAAPMWwWGTY/H3h5dopZ9+7dNXLkyAZd+9xzz9mLQwMHDtSyZcu0c+dOLVu2TAMHDpQkJScn6/nnn681xrlz5zRmzBh7cSgpKUnr1q3T9u3b9dJLLyk0NFSFhYW64447lJmZ2aA8mzo6iAAAAAAAgNtNnz5dgwYN0qBBg9S1a1fl5uaqd+/e9YqRk5Oj2bNnS5KioqK0efNmBQcHS5IGDRqkW2+9VXFxccrIyNCsWbN03333qU+fPjXizJkzR9nZ2ZKk2bNna9q0afZzgwcP1ogRIzRs2DAVFxdrypQpWr9+fUPfdpNFBxEAAAAAAHC7GTNmaMyYMZc01ez111+X1WqVJM2fP99eHKrUqlUrzZ8/X5JktVo1b968GjEuXLigN954Q5IUGRmpJ554osaYwYMHa+LEiZKkDRs2aPfu3Q3OuamiQAQAAAAAgKfYLL7z8nGGYejzzz+XJA0YMEAxMTEOx8XExKh///6SpJUrV8owjGrnN27cqIKCAknSvffeKz8/x6WQqgtnf/bZZ5eYfdNDgQgAAAAAAPicw4cP64cffpAkxcXFOR1beT4vL0+5ubnVzm3ZsqXGOEeioqIUEhIiSdq6dWtDUm7SWIMIAAAAAAATO3HihMsx4eHhHsikuqysLPvxgAEDnI6tej4rK6vaWkd1jRMQEKA+ffooMzOz2jVmQYEIAAAAAAAPqdjFzPvTu6rmEB0d7Xr8RdO2POHYsWP2Y1cFqu7duzu8rurXISEhateuncs4mZmZOnXqlEpLSxUUFFTPrJsuppgBAAAAAACfc/bsWftxaGio07GVU8Okii3tHcVxFcNVnOaODiIAAAAAAExs586duuyyy7ydRg3nz5+3HwcGBjodW7XTp6SkxGEcVzFcxWnuKBABAAAAAOAhhuEjU8yMX3K47LLLvLLGkCstW7a0H5eVlTkdW1paaj8ODg52GMdVDFdxmjummAEAAAAAAJ/TunVr+7Gr6V5FRUX244unklXGqcuUMWdxmjsKRAAAAAAAwOdU7WrKy8tzOrbqwtRVF6yuGqeoqEgFBQV1itO5c2dTLVAtUSACAAAAAMBjKncx84WXr7vyyivtx9nZ2U7HVj0fGRnZoDhWq1WHDh1yGMMMKBABAAAAAACf07t3b4WFhUmSNm3a5HTs5s2bJUmXX365evXqVe3ckCFD7MfO4mRkZNinmMXGxjYk5SaNAhEAAAAAAPA5FotF8fHxkio6f9LT0x2OS09Pt3cGxcfHy2Kp3h01fPhwtW3bVpK0ZMkSGYbhME5qaqr9eOzYsZeafpNDgQgAAAAAAE+x+fnOqwmYMmWKAgIqNmCfPHlyja3nS0pKNHnyZElSQECApkyZUiNGYGCgHn30UUlSVlaW5syZU2PMjh07lJKSIkmKi4vToEGD3Pk2mgS2uQcANCqLn+P/Q9PU7+UXaPXYvTx9P7/Aco/dS5L8AmwevZ+n2Kye/Yu3rczfg/fy3F8hPXkvSR5dk6MprP8BAJdi69atysnJsX99+vRp+3FOTk61jh1JSkxMrBEjIiJCU6dO1cyZM5WRkaHY2Fg99dRT6tOnjw4dOqRZs2Zp7969kqRp06apX79+DnOZNm2ali9frgMHDujJJ59UTk6O7rrrLgUHB2vDhg16+eWXZbVaFRwcrHnz5l3ye2+KLEZtvVVAPeXl5f2yWrz/DZIl2LsJAfAJFIia3v0oELkHBaKmdy+JAhHgk4wSqXydpIodpqrubNVUVP23UseoCPkHtfByRlJ56QX9lHFAUuN9romJiVqyZEmdx9dWnrDZbEpKStLixYtrvXbixIlKTk6Wn1/tf/7m5ORo1KhROnjwoMPzbdq00QcffKAxY8bUOefmpGn0lAEAAAAA0Ax4e+eyprSLWSU/Pz+lpKQoLS1N8fHxCgsLU2BgoMLCwhQfH6/Vq1dr0aJFTotDktS3b1/t3btXs2bNUlRUlNq1a6dWrVqpf//+evzxx5WZmWna4pBEBxHciA4iAI7QQdT07kcHkXvQQdT07iXRQQT4pGbWQdThN/19poPo5z37JTXdzxXuRQcRAAAAAACAybFINQAAAAAAHuIr07t8IQf4FjqIAAAAAAAATI4OIgAAAAAAPMQwfKN7h9WIcTE6iAAAAAAAAEyOAhEAAAAAAIDJMcUMAAAAAABP8ZFFquULOcCn0EEEAAAAAABgchSIAAAAAAAATI4pZgAAAAAAeIrNr+Llbb6QA3wKPxEAAAAAAAAmRwcRAJiMxc/w7P0Cyj12rxahpR67V2C7Eo/dS5KCO5/12L1advHcvSSpRRvPfpaeUlbQyqP3O3+ytcfuVXLKc/cqKwj22L0kyVoc6MGb+XvsVj6xIC4AwKdRIAIAAAAAwEMMH9nFzBdygG9hihkAAAAAAIDJUSACAAAAAAAwOaaYAQAAAADgIYZhkWF4f3qXL+QA30IHEQAAAAAAgMlRIAIAAAAAADA5ppgBAAAAAOAhhuEju5gxxQwXoYMIAAAAAADA5CgQAQAAAAAAmBxTzAAAAAAA8BSbpeLlbb6QA3wKHUQAAAAAAAAmR4EIAAAAAADA5JhiBgAAAACAhxg2iwyb93s1fGEnNfgW7/9UAgAAAAAAwKvoIAIANBs2q7/n7lXmuXtJkrU40GP3KisI9ti9JM9/lp5y4VyQZ+9X5Ln7lZ9v4bF7GR78fS1J8uD/1ef/3gMAfAkFIgAAAAAAPKRiipn3C8S+kAN8C1PMAAAAAAAATI4OIgAAAAAAPMQwfKSDyPB+DvAtdBABAAAAAACYHAUiAAAAAAAAk2OKGQAAAAAAnmKzVLy8zRdygE+hgwgAAAAAAMDkKBABAAAAAACYHFPMAAAAAADwEMPmI7uY+UAO8C10EAEAAAAAAJgcBSIAAAAAAACTY4oZAAAAAAAeYtj8ZNi836vhCznAt/ATAQAAAAAAYHIUiAAAAAAAAEyOKWYAYDKe3rHCKPPcHzWG1d9j9yovDvTYvSTp/OlQj93LL8DmsXs1Z57+vWazevD/+3lwWoLHn1ns6gOgsfnILmbyhRzgU+ggAgAAAAAAMDkKRAAAAAAAACbHFDMAAAAAADzEMCw+Mb3LMLyfA3wLHUQAAAAAAAAmR4EIAAAAAADA5JhiBgAAAACAp9gkWXxgehebluIidBABAAAAAACYHAUiAAAAAAAAk2OKGQAAAAAAHmLYLD4xxczwgZ3U4FvoIAIAAAAAADA5CkQAAAAAAAAmxxQzAAAAAAA8hClm8FV0EAEAAAAAAJgcHUQAAAAAAHiIYfhJNu/3ahiG93OAb6FABABoNjzZKu3xtmyr5/4SV+6xOwEAAMBXUDIEAAAAAAAwOTqIAAAAAADwFJtFkg8sEM0i1bgIHUQAAAAAAAAmR4EIAAAAAADA5JhiBgAAAACAhxg+MsXM4xtuwOfRQQQAAAAAAGByFIgAAAAAAABMjilmAAAAAAB4CFPM4KvoIAIAAAAAADA5CkQAAAAAAAAmxxQzAAAAAAA8hClm8FV0EAEAAAAAAJgcBSIAAAAAANCojh49qqlTpyoyMlIhISHq0KGDoqOjNWfOHBUXF3s7PYgpZgAAAAAAeI5hkWw+0KtheG6KWVpamv70pz+psLDQ/r3i4mLt2rVLu3bt0qJFi7R69WpdccUVHssJNfnATyUAAAAAAGiOvv76a40bN06FhYUKDQ3VSy+9pO3bt2vdunVKSkqSJO3fv1+jR4/WuXPnvJytudFBBAAAAAAAGsWUKVNUXFysgIAAffXVVxo8eLD93PXXX69+/frpySefVHZ2tl577TVNnz7di9maGx1EAAAAAAB4iGGz+Myrse3atUsbN26UJE2cOLFacajSE088ocjISEnSvHnzdOHChUbPC45RIAIAAAAAAG63cuVK+/F9993ncIyfn58mTJggScrPz7cXlOB5FIgAAAAAAIDbbdmyRZIUEhKi3/72t7WOi4uLsx9v3bq10fOCY6xBBAAAAACAp9gsMiye20GsVh7YxSwrK0uS1LdvXwUE1F5+GDBgQI1r4HkUiOA2Vqv1ly+M895LBAAAAEDzUeXfFtX+zdFklUqGt3OQpFL70YkTJ1yODg8Pr1f08+fP6/Tp03W6tn379goJCVFRUZGOHTtWr/vAfSgQwW1OnTr1yxe2bd5LBAAAAECzdOrUKfXq1cvbaVyact+bQhUdHe1yjGHUr6p19uxZ+3FoaKjL8ZUFIra69x7WIILb/N///Z+3UwAAAAAA+IDz53/p/AoMDHQ5PigoSJJUUlLSaDnBOTqI4DZV541u375d3bt392I2kKTrr79ekrR+/XovZ9K4msL79HaOnrx/Y93LnXHdEauhMU6cOGH/v3Q7d+7UZZdd1uAc4B7e/v3pKU3hfXo7R56V7o/Fs7L58ObvT6vVap+tcM0113j8/u7QrVs3n506deLECXXu3NnpGkEN0bJlS/txWVmZy/GlpRVT3oKDg92aB+qOAhHcpuoDoHv37vWeowr3a9GihaT6zxduaprC+/R2jp68f2Pdy51x3RHLHTEuu+wyn/65NQtv//70lKbwPr2dI89K98fiWdl8ePv3Z1OfVhYQEOCzP8eNlVfr1q3tx3WZNlZUVCSpbtPR0DiYYgYAAAAAANyqZcuW6tSpkyQpLy/P6dj8/Hx7gYiZKN5DgQgAAAAAALhdZGSkJCknJ8fpDnTZ2dk1roHnUSACAAAAAABuN2TIEEkV08d2795d67hNmzbZj2NjYxs9LzhmMeq7Vx1Qi7y8PHs74LFjx3x2ji0AeBPPSgBwjWcl0Dzs3LlT1113nSTpgQce0MKFC2uMsdlsuvrqq5WVlaV27drp5MmT9jWv4Fl0EAEAAAAAALeLjo7W0KFDJUkpKSnasWNHjTFz585VVlaWJOmxxx6jOORF7GIGAAAAAAAaxRtvvKHY2FiVlJRo5MiRevbZZzVixAiVlJToo48+UnJysiQpIiJCTzzxhJezNTcKRAAAAAAAoFEMHDhQy5cv1z333KMzZ87o2WefrTEmIiJCaWlpat26tRcyRCXWIAIAAAAAAI3qyJEjeuONN5SWlqa8vDwFBgaqb9++uuOOO/TII4+oVatW3k7R9CgQAQAAAAAAmByLVAMAAAAAAJgcBSIAAAAAAACTo0AEAAAAAABgchSIAAAAAAAATI4CEQAAAAAAgMlRIILPeP/99/XAAw8oKipKQUFBslgsSk1N9XZaAOAzfvjhB82bN08jR45Ujx49FBgYqG7duun222/Xv//9b2+nBwA+oaCgQI8++qgGDx6sbt26KSgoSJdffrmuv/56ffrpp2ITZwBwjG3u4TN69eqlI0eOqFOnTgoJCdGRI0f03nvvKTEx0dupAYBPePrppzVr1iz16dNHcXFx6tKliw4ePKiVK1fKMAwtW7ZM48aN83aaAOBVOTk5+vWvf62YmBj17dtXHTp00MmTJ/XFF1/o5MmTSkpKUnJysrfTBACfQ4EIPmPt2rXq16+fevbsqZkzZ+qZZ56hQAQAVXz22Wfq3Lmzhg4dWu37W7Zs0Q033KDWrVvr+PHjCgoK8lKGAOB95eXlMgxDAQEB1b5/9uxZxcTE6LvvvtO+fft01VVXeSlDAPBNTDGDz7jxxhvVs2dPb6cBAD4rISGhRnFIkoYOHaoRI0bo559/1jfffOOFzADAd/j7+9coDklS69atddNNN0mq6DICAFRHgQg6efKkVq1apenTp+vmm29Wp06dZLFYZLFY6t29c/ToUU2dOlWRkZEKCQlRhw4dFB0drTlz5qi4uLhx3gAAeICvPytbtGghSQ7/UQQAnuLLz8rz589r/fr1slgsuvLKK+t9PQA0d/wtEuratatb4qSlpelPf/qTCgsL7d8rLi7Wrl27tGvXLi1atEirV6/WFVdc4Zb7AYAn+fKz8ujRo1q7dq26deuma665xi15AkBD+NKzsqCgQPPmzZPNZtPJkye1evVqHTt2TH/729/Ur18/t+QJAM0JHUSopnv37ho5cmS9r/v66681btw4FRYWKjQ0VC+99JK2b9+udevWKSkpSZK0f/9+jR49WufOnXN32gDgUb70rLxw4YLGjx+v0tJSzZ49W/7+/vXOCwAag7eflQUFBZoxY4b+/ve/65133tGPP/6oV199VX/7298a/J4AoDmjgwiaPn26Bg0apEGDBqlr167Kzc1V79696xVjypQpKi4uVkBAgL766isNHjzYfu76669Xv3799OSTTyo7O1uvvfaapk+f7u63AQCNyheflTabTffff782b96spKQkjR8/vkHvDQDcxZeelb169ZJhGCovL9exY8f00Ucf6a9//au2b9+ujz/+mCm5AHAROoigGTNmaMyYMQ1uCd61a5c2btwoSZo4cWK1P8QrPfHEE4qMjJQkzZs3TxcuXGhwvgDgDb72rDQMQ0lJSXr//fd1zz33aOHChQ3KCwDcydeelVLFotW9evXS008/rRdffFErVqzQu+++26D8AKA5o0CES7Zy5Ur78X333edwjJ+fnyZMmCBJys/Pt//BDwBm4c5npc1m08SJE7V48WL98Y9/VGpqqvz8+CMdQNPX2H+vrJzyxt9FAaAm/jaJS7ZlyxZJUkhIiH7729/WOi4uLs5+vHXr1kbPCwB8ibuelTabTX/+85/13nvv6c4779TSpUtZdwhAs9HYf688fvy4JHZ8BABHKBDhkmVlZUmS+vbt6/QP2wEDBtS4BgDMwh3PysrOoffee0933HGH3n//fYpDAJoVdzwr//Of/1Tb/azSzz//rGeffVaSdPPNN7sjXQBoViid45KcP39ep0+fliSFh4c7Hdu+fXuFhISoqKhIx44dq3F+0aJF9v8D9M0339i/V9kCfNttt+m2225zX/IA4CHuelb+93//t1JTUxUaGqqIiAi9+OKLNa6/7bbb9Otf/9ptuQOAp7jrWZmamqpFixZpxIgR6tmzp0JCQnTkyBGlpaXp3Llzuv3223X33Xc32vsAgKaKAhEuydmzZ+3HoaGhLsdX/kHuaEvSrVu3asmSJdW+t23bNm3btk1SxU4UFIgANEXuelbm5uZKks6dO6eXXnrJ4bW9evWiQASgSXLXs/IPf/iDCgsLlZ6ers2bN6u4uFgdOnTQkCFDNGHCBN11112yWCxuzx8AmjoKRLgk58+ftx8HBga6HB8UFCRJKikpqXEuNTVVqampbssNAHyFu56VPCcBNGfuelYOGTJEQ4YMcW9yAGACrEGES9KyZUv7cVlZmcvxpaWlkqTg4OBGywkAfA3PSgBwjWclAHgXBSJcktatW9uPHU0bu1hRUZGkurUNA0BzwbMSAFzjWQkA3kWBCJekZcuW6tSpkyQpLy/P6dj8/Hz7H+Tdu3dv9NwAwFfwrAQA13hWAoB3USDCJYuMjJQk5eTkyGq11jouOzu7xjUAYBY8KwHANZ6VAOA9FIhwySoXASwqKtLu3btrHbdp0yb7cWxsbKPnBQC+hGclALjGsxIAvIcCES5Z1a3n33vvPYdjbDab/vGPf0iS2rVrpxEjRngiNQDwGTwrAcA1npUA4D0UiHDJoqOjNXToUElSSkqKduzYUWPM3LlzlZWVJUl67LHH1KJFC4/mCADexrMSAFzjWQkA3mMxDMPwdhLwrq1btyonJ8f+9enTpzVt2jRJFS27f/7zn6uNT0xMrBFj7969io2NVUlJiUJDQ/Xss89qxIgRKikp0UcffaTk5GRJUkREhDIyMqrtUgEATQHPSgBwjWclADRdFIigxMRELVmypM7ja/uR+eKLL3TPPffozJkzDs9HREQoLS1Nffv2bVCeAOBNPCsBwDWelQDQdDHFDG5zyy23KDMzU48//rgiIiLUqlUrtWvXTlFRUZo1a5b27t3LH+IATI9nJQC4xrMSADyPDiIAAAAAAACTo4MIAAAAAADA5CgQAQAAAAAAmBwFIgAAAAAAAJOjQAQAAAAAAGByFIgAAAAAAABMjgIRAAAAAACAyVEgAgAAAAAAMDkKRAAAAAAAACZHgQgAAAAAAMDkKBABAAAAAACYHAUiAAAAAAAAk6NABAAAAAAAYHIUiAAAAAAAAEyOAhEAAAAAAIDJUSACAAAAAAAwOQpEAAAAAAAAJkeBCAAAAAAAwOQoEAEAAAAAAJgcBSIAAC6RxWKRxWLRCy+84O1U0AgOHjyooKAgBQUF6ejRo95O55Lt3LlTFotFHTp00E8//eTtdAAAgI+gQAQAMI2NGzfaizlVXwEBAerQoYN69+6tYcOG6fHHH9enn36qsrIyb6cMH/DEE0+orKxM9913n3r06OHtdC5ZdHS0brrpJuXn51PUBAAAdhSIAACmV15ervz8fOXm5mrLli2aN2+e/vCHPyg8PFwvvviirFart1NscppLV1V6erq++OILtWjRQs8++6y303Gb6dOnS5KSk5N15MgRL2cDAAB8QYC3EwAAwBseeugh/eUvf7F/fe7cOeXn5yszM1Pr1q3T2rVrderUKT3//PP64osvtGrVKnXu3NlhLMMwPJU2POzvf/+7JOmOO+5oFt1Dlf7rv/5LMTExSk9P1+zZs/U///M/3k4JAAB4GR1EAABT6tKli66++mr7KyYmRjfffLOeeuopffXVV/rmm280cOBASRVrtiQkJDDlzGQOHDigf/7zn5Kke+65x8vZuN/dd98tSVqyZIkKCgq8mwwAAPA6CkQAADhw1VVXadu2bfYi0datW/X22297OSt40uLFi2UYhrp06aLf/e533k7H7e68804FBASoqKhIy5cv93Y6AADAyygQAQBQi+DgYC1dulQWi0WSNGfOHF24cKHGOFfr7Xz//feaO3eubrnlFvXq1UvBwcEKDg5Wz549deedd2rNmjVO80hNTbXfIzc3V2VlZXrttdcUFRWltm3bqkOHDho+fLjS0tKqXXf27FnNnj1bAwcOVJs2bdSuXTv97ne/07p16+r0/vPy8vTMM8/oN7/5jdq3b6+WLVuqR48euvPOO7VhwwaH1/Tq1cv+eUnSjBkzaiwKnpiY6Lb7SVJubq49dmpqqiTps88+06hRoxQWFqaAgAANHz68Tu+5qo8//liSFB8fr4CA2mflV77nyveVnZ2tpKQk9erVS0FBQeratavGjh2r9PT0WmNUXUB948aNMgxDKSkpGjJkiDp27Kg2bdooOjpaS5curXZdWVmZFi5cqJiYGHXo0EGtW7dWbGysPXdnunTpoiFDhkgSBSIAACAZAACYxIYNGwxJhiTjb3/7W52vGzlypP26bdu21TjvLOb3339vP+/sdc899xgXLlxweP/33nvPPu7rr782rrvuulrjzJ071zAMwzhy5Ihx1VVXORxjsViMpUuXOn3PixYtMoKDg53mPHHixBo59+zZ0+V7vffee912P8MwjMOHD9vHLF682Bg/fnyNa+Pi4py+34vl5ubar01JSXE6tvI933vvvcann35qtGrVymH+/v7+xkcffeQwRtWfza+++sq45ZZbav0cHn30UcMwDOPnn382hg0bVuu4l156yeX7fPrppw1JRsuWLY3S0tJ6fUYAAKB5oYMIAAAXbrzxRvvxli1b6nVteXm5AgMDdcstt+jNN9/U2rVrtWfPHq1du1Zvv/22rrrqKknS+++/b18Q2ZlJkyZp9+7d+stf/qJ//etfysjI0KJFi3TZZZdJkqZNm6Z9+/YpISFB33//vZ5++mlt3LhRu3bt0rx589S2bVsZhqG//OUvOnnypMN7LF68WH/+859VUlKiq6++WvPnz9fWrVu1Z88effrppxo1apQkKSUlRU899VS1ayvXb6r00EMP6Ztvvqn2eumll9x2v4vNmzdPS5cu1dChQ/Xhhx8qIyNDa9eu1fjx411+tlVV/XUeNGhQna7JzMzUn/70J3Xt2lVvvfWW0tPTtWPHDr3wwgtq2bKlysvLNWnSJJ06dcppnMqF0f/0pz8pLS1Nu3fv1rJly9S/f39Jsv8cJSYmavv27XrooYf01Vdfaffu3UpJSVFYWJikip3Kvv32W6f3io6OliSdP39eu3btqtP7BAAAzZS3K1QAAHhKQzuI1q5da7/u/vvvr3HeWcxz584Zx48frzW2zWYzEhMTDUlGSEiIUVBQUGNM1Q4ii8VirFixosaYzMxMw9/f35BkdO7c2QgKCjLS09NrjEtLS7PHeu2112qcP3r0qL0D5t577621q+nZZ581JBl+fn7G/v37a5yv6+fsjvtV7SCSZEyYMMGw2WxO7+vKQw89ZEgyAgMDDavV6nRs1a6p3/72tw5/Dd9//32nn3vVn01Jxrx582qMOXHihNGmTRv7r3FtPwtff/214efnV63bqDZHjhyx33P27NlOxwIAgOaNDiIAAFzo2LGj/Tg/P79e14aEhNi7exyxWCyaO3eu/P39VVRUpLVr1zqNN27cON122201vn/NNdfY15M5deqUHn/8cV133XU1xo0aNUo9e/aU5Lgb6o033lBxcbHCwsK0cOHCWtfemTFjhi6//HLZbDb94x//cJqzM+6+X7t27fTWW29VWwepIfLy8iRV/Nr7+/vX+brFixerbdu2Nb5/99132zt7XHWhXXfddXrsscdqfL9bt24aO3aspIpf4zvvvNPhz8K1115r/1lwda+uXbvajyvfMwAAMCcKRAAAuBAaGmo/Pnv27CXFunDhgvLy8pSVlaV9+/Zp3759On78uL0I9fXXXzu9/q677qr13LXXXms/vvPOO12O+/7772uc+/zzzyVJt9xyi1q2bFlrjICAAA0ePFiStGPHDqc5O+Pu+91yyy1q3bp1g/OpVDkNrH379nW+5pprrqn2a1CVxWKx74jn6HOvyh2/xr/61a/qdK+goCAFBwdLksupbwAAoHmrfUsOAAAgqXpRqE2bNvW+/sKFC0pOTtbSpUu1d+9elZWV1Tr29OnTTmNFRETUeq5du3b1GndxsauwsFA5OTmSpHfeeUfvvPOO01wq/fjjj3Uad7HGuF9tBZr6+vnnnyXVr0A0YMAAp+c7dOggyXWRsTF/jR1p3769SkpK9NNPP7kcCwAAmi8KRAAAuFC1aFP5j/y6+vnnnzVy5Ejt3r27TuNLSkqcnm/VqlWt5/z8/Oo1rry8vNr3a1u02pXi4uIGXdcY96tPQceZym4mV78eVTn7zKXaP/f6xKnvr7HNZnN6L+mX91jZSQQAAMyJAhEAAC7s3bvXfly5k1RdPfbYY/bi0G233ab7779f1157rbp06aKWLVva18rp0aOHjh07JsMw3Jd4PVUtXEyZMkUTJ06s03WBgYE+c7/6rBfkTOfOnSX90knUXNlsNhUWFkr65T0DAABzokAEAIAL//rXv+zHlYv/1sWZM2e0fPlySRWLFH/wwQe1jq3v4teNoepi3MXFxbr66qub1f3qo7JY4gu/Lo2psLDQ3mVEgQgAAHNjkWoAAJzYt2+f1q1bJ0nq3r27oqKi6nztwYMHdeHCBUnOFx7ev3+/zp07d2mJukHnzp11+eWXS5LWrl3b6N1Mnr5ffVxzzTWSKgooDZ0K1xQcOHDAflz5ngEAgDlRIAIAoBYlJSWaMGGCvXAxderUWrdhd8RqtdqPna2bs3DhwoYn6Wa33nqrpIrdrz755JMGx6lcw6e0tNQj93O3oUOH2o937drlxUwaV9X3VvU9AwAA86FABACAA999952GDBliX38oLi5ODz30UL1i9O3b177G0D/+8Q+HY1atWqX58+dfWrJuNG3aNAUFBUmSHnzwQWVkZDgdv3r1amVmZtb4/mWXXSZJOnTokEfu527R0dH2vHbu3Nno9/OWyvfWq1cvhYeHezkbAADgTaxBBAAwpZMnT2rfvn32r4uKipSfn6/MzEytW7dO//rXv+ydQzExMfrkk0/UokWLet2jY8eOGjVqlNLS0rR69Wr9/ve/1wMPPKAePXro5MmT+vTTT5WamqorrrhCBQUFOnXqlFvfY0P07t1bCxcu1H333aeff/5ZsbGxGj9+vMaMGaMePXrIarUqLy9PO3fu1CeffKJDhw7piy++qLG9/H/913/p8OHD+t///V+98847io2NtXcVtWnTRl26dHHr/dwtKChIN9xwg1avXq1169ZpxowZjXo/bzAMQxs2bJAkjR492svZAAAAb6NABAAwpQULFmjBggVOx3Tu3FlTpkzRk08+Wa+pZRffZ8iQITp69Ki+/PJLffnll9XO9+jRQytXrtSoUaMaFL8xJCYmKjg4WJMmTdKZM2eUkpKilJQUh2P9/PwUEhJS4/tTp07VJ598otLSUj344IPVzt17771KTU116/0aw/jx47V69Wpt375dubm56tWrl0fu6ymbN29WXl6eJOmee+7xcjYAAMDbmGIGADA9Pz8/tW3bVj169NDQoUM1ZcoUffrpp8rLy9Ozzz7b4OKQVLGw9Z49ezRt2jRFREQoKChIbdu21a9+9Sv97W9/03/+8x9deeWVbnw37nHnnXcqNzdXM2fO1PDhw9WlSxe1aNFCrVq10hVXXKFbbrlFr732mnJzczVixIga1//617/Wjh079Mc//lE9evSwT9dqrPs1hoSEBHXr1k2GYWjZsmUeuacnffjhh5KkgQMHKiYmxsvZAAAAb7MYvrRlCAAAgA+ZOXOmnnnmGfXr10/Z2dny82se/2/t7Nmz6tGjhwoKCvTBBx/o7rvv9nZKAADAy5rH33IAAAAawSOPPKLOnTvr4MGDWr58ubfTcZu33npLBQUFioyM1F133eXtdAAAgA+gQAQAAFCL0NBQ+wLVf//732Wz2byc0aUrKirSa6+9JkmaPXt2s+mKAgAAl4ZFqgEAAJyYNGmSCgoKVFpaquPHjzf57eCPHDmihx9+WB06dNCYMWO8nQ4AAPARrEEEAAAAAABgcvQUAwAAAAAAmBwFIgAAAAAAAJOjQAQAAAAAAGByFIgAAAAAAABMjgIRAAAAAACAyVEgAgAAAAAAMDkKRAAAAAAAACZHgQgAAAAAAMDkKBABAAAAAACYHAUiAAAAAAAAk6NABAAAAAAAYHIUiAAAAAAAAEyOAhEAAAAAAIDJUSACAAAAAAAwOQpEAAAAAAAAJkeBCAAAAAAAwOQoEAEAAAAAAJgcBSIAAAAAAACTo0AEAAAAAABgchSIAAAAAAAATO7/AdmgqMgdiwnrAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sd.hygroscopicity.grown_size_distribution.plot()" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "execution": { "iopub.execute_input": "2023-11-28T22:18:19.259569Z", "iopub.status.busy": "2023-11-28T22:18:19.259320Z", "iopub.status.idle": "2023-11-28T22:18:21.498145Z", "shell.execute_reply": "2023-11-28T22:18:21.497377Z", "shell.execute_reply.started": "2023-11-28T22:18:19.259541Z" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 49, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABIkAAAM6CAYAAAAFSxMNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAB7CAAAewgFu0HU+AACuUUlEQVR4nOzdd3hc5Zn+8XuKyox6d5Eb7qaDbWxMMJCQBJtmsxASEmCXUDbUbICQDfyW7Cb03VASigkEyAZCNxsgkAAuFBvbYDAG21iuktzU20iadn5/jDSa0YykkTRF0nw/13UunTnnzDuvDDbWzfs8r8kwDEMAAAAAAABIauZETwAAAAAAAACJR0gEAAAAAAAAQiIAAAAAAAAQEgEAAAAAAECERAAAAAAAABAhEQAAAAAAAERIBAAAAAAAABESAQAAAAAAQIREAAAAAAAAECERAAAAAAAAREgEAAAAAAAAERIBAAAAAABAhEQAAAAAAAAQIREAAAAAAABESAQAAAAAAAAREgEAAAAAAECSNdETwMjR1tamL774QpJUVFQkq5V/vQAAAAAAiDa3262qqipJ0pFHHqn09PSojMtP8YiaL774QnPnzk30NAAAAAAASBrr1q3TnDlzojIW5WYAAAAAAABgJRGip6ioyH++bt06jR49OoGziUzT/xynLLX6X5ed+qimHLswgTMCAAAAAKB3+/fv91fyBP4sPliERIiawB5Eo0ePVmlpaQJnE5nGbIuyAxbUNRcXDYt5AwAAAAAgKar9gCk3AwAAAAAAACERAAAAAAAACIkAAAAAAAAgQiIAAAAAAACIkAgAAAAAAAAiJAIAAAAAAIAIiQAAAAAAACBCIgAAAAAAAIiQCAAAAAAAACIkAgAAAAAAgAiJAAAAAAAAIEIiAAAAAAAAiJAIAAAAAAAAIiQCAAAAAACACIkAAAAAAAAgQiIAAAAAAACIkAgAAAAAAAAiJAIAAAAAAIAIiQAAAAAAACBCIgAAAAAAAIiQCAAAAAAAACIkAgAAAAAAgAiJAAAAAAAAIEIiAAAAAAAAiJAIAAAAAAAAIiQCAAAAAACACIkAAAAAAAAgQiIAAAAAAACIkAgAAAAAAAAiJAIAAAAAAIAIiQAAAAAAACBCIgAAAAAAAIiQCAAAAAAAACIkAgAAAAAAgAiJAAAAAAAAIEIiAAAAAAAAiJAIAAAAAAAAIiQCAAAAAACACIkAAAAAAAAgQiIAAAAAAACIkAgAAAAAAAAiJAIAAAAAAIAIiQAAAAAAACBCIgAAAAAAAIiQCAAAAAAAACIkAgAAAAAAgAiJAAAAAAAAIEIiAAAAAAAAiJAIAAAAAAAAIiQCAAAAAACACImAboxETwAAAAAAgIQgJEKSMyV6AgAAAAAADAmERAAAAAAAACAkAgAAAAAAACERAAAAAAAAREgEAAAAAAAAERIBAAAAAABAhERAEENGoqcAAAAAAEBCEBIhqREJAQAAAADgQ0gEBDKIjQAAAAAAyYmQCEnNkKnbBUIiAAAAAEByIiRCUgsJiQAAAAAASFKERAAAAAAAACAkQnILKS4zvImYBgAAAAAACUdIhCRHuRkAAAAAABIhERCMxtUAAAAAgCRFSISk1r1xtRFagAYAAAAAQFIgJEJSIxICAAAAAMCHkAgIRLkZAAAAACBJERIhqXUvNyMkAgAAAAAkK0IiJDl2NwMAAAAAQCIkAgAAAAAAgAiJkORCys3kTcg8AAAAAABINEIiJDVv998CXkIiAAAAAEByIiRCUvOEhESexEwEAAAAAIAEIyRCUgsJiQxCIgAAAABAciIkQlLzyhL02vC6EzQTAAAAAAASi5AISc1rotwMAAAAAACJkAhJztNtJZFYSQQAAAAASFKEREhqobubsZIIAAAAAJCcCImQ1Dym7iuJCIkAAAAAAMmJkAhJLWQlkUG5GQAAAAAgORESIal1392MlUQAAAAAgGRFSISkFrq7GSuJAAAAAADJiZAISS1kdzODlUQAAAAAgORESISk5qVxNQAAAAAAkgiJkORCGlcTEgEAAAAAkhQhEZKa12QNem3yuhI0EwAAAAAAEouQCEnNaU4Lem1yORI0EwAAAAAAEouQCEmtzZwV9NrsbEzQTAAAAAAASCxCIiS1dmtm0GuLsylBMwEAAAAAILEIiZDUnN1CohQXIREAAAAAIDkREiGpuVKCy81SXJSbAQAAAACSEyERkporJTvodSoriQAAAAAASYqQCEnNnRocEqV5mhM0EwAAAAAAEouQCEnN0z0kchMSAQAAAACSEyERkpo3LbgnUarRJrmdCZoNAAAAAACJQ0iEpGak5YRebKd5NQAAAAAg+RASIamZ0sOERG0N8Z8IAAAAAAAJRkiEpGZNs6vdSAm+2FafkLkAAAAAAJBIhERIamlWsxplD77ISiIAAAAAQBIiJEJSS7Oa1Wh0D4noSQQAAAAASD6EREhqaSkWNXVfSdRam5jJAAAAAACQQIRESGq5thTtMwqCL+7/PDGTAQAAAAAggQiJkNTG5Nr0iXdq0DXvnjUJmg0AAAAAAIlDSISkVppn0wbv9KBr5uptkoOSMwAAAABAcknakMhkMkV0nHLKKX2O9dZbb2np0qUqLS1VWlqaSktLtXTpUr311lsRz8fhcOjee+/V3LlzlZ+fr8zMTM2cOVM33nij9u7dG/E4X375pa666ipNmTJFNptNRUVFOvnkk/XYY4/J7XZHPE6ySE+x6IB9mlqN1OAb5R8nZkIAAAAAACRI0oZE0WAYhq688kqdccYZevXVV1VZWSmn06nKykq9+uqrOuOMM3TllVfKMIxex9mxY4eOO+443XzzzVq/fr3q6urU0tKirVu36r//+7911FFH6c033+xzPk888YSOP/54PfbYY9qxY4fa2tpUXV2t999/X1dddZW+8Y1vqKamJlrf/ogxKi9LG71Tgi/upeQMAAAAAJBckj4k+td//Vd98cUXPR5//OMfe3zvrbfeqmXLlkmSjj32WD333HNat26dnnvuOR177LGSpGXLlum2227rcYzm5madeeaZ2rZtmyTp8ssv17vvvquPPvpIv/nNb5SZmamGhgadf/752rRpU4/jvP3227riiivU3t6ukpISPfjgg/r444/1t7/9TUuXLpUkrV27VkuXLpXX6+33r9NINjbPpvVGcMmZ9q5NzGQAAAAAAEgQa6InkGjFxcU64ogj+v2+srIy3XPPPZKk2bNna/Xq1bLZbJKkOXPm6Oyzz9bChQu1YcMG3X333frnf/5nTZ48OWSc++67T1u3bpUk3XPPPbrpppv89+bPn69TTz1VJ598shwOh2644Qa99957IWO43W5dc8018nq9ys7O1ocffhj0Wd/97nd19dVX6+GHH9bq1av1v//7v7r44ov7/T2PVGNzQ/sSqfJTydUqpdgSMykAAAAAAOIs6VcSDdRvf/tbf4+fhx56yB8QdbLb7XrooYck+UKc+++/P2QMl8ulBx54QJI0c+ZM/exnPwt5Zv78+brsssskSStWrNAnn3wS8syrr76qsrIySdIvfvGLsGHUvffeq7y8PP85uozNtWmjd4o8hqnrotcl7duYuEkBAAAAABBnhEQDYBiGXnvtNUnSjBkzNG/evLDPzZs3T9On+1aoLF++PKQ30cqVK1VfXy9JuuSSS2Q2h//Hcemll/rPX3nllZD7y5cvD/tsILvdrgsuuECStHnzZm3fvj3sc8lobJ5dzbJrizEh+AZ9iQAAAAAASYSQaAB27dqlyspKSdLChQt7fbbzfkVFhXbv3h107/333w95LpzZs2crIyNDkvTBBx+E3O8cZ/r06Ro1alSfc+lpnGRVmudbBba+e8kZfYkAAAAAAEkk6UOiF198UdOnT5fNZlNWVpamTp2qSy65RCtWrOjxPVu2bPGfz5gxo9fxA+8Hvq8/41itVn8JWfcxmpubVVFRMei5JLOxHSFRSF+ivR9LNPkGAAAAACSJpG9c/dVXXwW9LisrU1lZmZ555hmde+65euqpp5STkxP0THl5uf+8tLS01/HHjRsX9n2BrzMyMpSbm9vnOJs2bVJVVZXa29uVlpYmybdCqbOMbTBziURnGNWT/fv393vMoSA7PUVZ6VZtaJsWfKO9QaraIpUcnpiJAQAAAAAQR0kbEtntdp199tn65je/qRkzZigzM1NVVVVatWqVHn30UdXU1Gj58uU655xz9I9//EMpKSn+9zY1NfnPMzMze/2czjIxybfqJ1DnOH2NEW6czpAoWnOJRGDINNKMzbVp64F87fUWaby5quvG3jWERAAAAACApJC0IVFlZWXY1Tunn366rr32Wp1xxhnauHGjVq1apUceeUTXXXed/5m2tjb/eWpqaq+f0xnmSFJra2vQvc5x+hqjt3GiNZdkV5pn09YDTVpvTNd4BYZEa6U5P07cxAAAAAAAiJOk7UnUW3lXSUmJXnrpJX/o0rmVfaf09HT/udPp7PVz2tvb/ec2my3sOH2N0ds40ZpLJMrLy3s91q1b1+8xh4qxuT30Jdr2llS7KwEzAgAAAAAgvpJ2JVFfDjvsMJ1++ul64403VFZWpn379mnMmDGSpKysLP9zfZVttbS0+M+7l4N1jhNJ6VdP40RrLpHoq+fRcDal2PfrscY7K/iGs0l66V+kf3lbsva94gsAAAAAgOEqaVcSRWLWrK7AoHPLeyk4LOmrmXNgg+juPX06x2lpaVF9fX1E4xQVFQWVjUVrLsnuO0eMktVs0m5jtF72fCP45r5PpX/8v8RMDAAAAACAOCEk6kXnrmHdBYZHW7du7XWMwPszZ84c0Dhut1s7duwIO0ZmZqY/8BnMXJJdcVa6vjmzWJL0/1yXaod3dPADHz8ibXk9ATMDAAAAACA+CIl68dVXX/nPO0vNJGnSpEn+16tWrep1jNWrV0uSxo4dq4kTJwbdO+mkk/znvY2zYcMGf6nYggULQu53jrNt2zYdOHCgx3ECPyPcOMnuwjnjJUktsulq1/VqM1KCH3jtJ1LdngTMDAAAAACA2CMk6sHOnTv1j3/8Q5KvP9HYsWP990wmk8455xxJvtU5a9euDTvG2rVr/at3zjnnHJlMpqD7p5xyinJyciRJTz/9dI8rl5566in/+ZIlS0Lun3vuuWGfDeRwOPTCCy9I8q1gmjZtWtjnktnJ04o0KtvXCHyrMV6/cl8c/EBbg/TSP0vuvhuNAwAAAAAw3CRlSPTXv/5Vbre7x/sHDx7UP/3TP8nlckmSrr766pBnbrjhBlmtvr7f1157bciW8q2trbr22mslSVarVTfccEPIGKmpqbruuuskSVu2bNF9990X8syaNWv0xBNPSJIWLlyoOXPmhDyzZMkSTZ48WZJ05513+kvTAt10002qq6vznyOUxWzSBbO7ejw95zlNb6rbiqvKT6R3bo/vxAAAAAAAiAOT0dPylRFs4sSJcrlcOu+88zR//nxNnDhRNptN1dXVWrlypR599FHV1NRI8pVyvfPOO0HNojv94he/0F133SVJOvbYY/Xzn/9ckydP1o4dO3T33Xdr48aN/ufuuOOOsHNpamrS7Nmz9fXXX0uSrrjiCl144YWy2WxasWKF7rjjDjU3N8tms+mjjz7SMcccE3acN998U2eddZa8Xq9KSkp06623au7cuaqrq9Pjjz+ul19+2f/9rFy5UhaLZVC/huFUVFT4+yOVl5cPy93QymsdOvneFer8XZGhVn1c8J/KbOlWZnbhs9KMxfGfIAAAAAAg6cXq5++kDYn27Om7t8x5552nP/zhD8rNzQ173+v16vLLL9eTTz7Z4xiXXXaZli1bJrO550VbZWVlWrRokbZv3x72fnZ2tv785z/rzDPP7HW+jz/+uK655ho5neHLoebOnas33nhDhYWFvY4zUCMhJJKkHz3xsd7fXu1/fUFpne6p+zfJ0971UHqOdOX7Ut6EBMwQAAAAAJDMCImiaNWqVVq1apXWrFmjnTt3qrq6Wo2Njf6dwk488URdcsklmj9/fkTjvfnmm1q2bJnWr1+v6upqFRYWas6cObryyit1xhlnRDRGS0uLfv/73+vFF19UWVmZnE6nxo0bp0WLFun666/XhAmRhRGbN2/Wgw8+qHfffVf79u1TRkaGZs6cqYsuukg//vGP/SVysTBSQqLXN+3TNc9uDLq2/jt7VLTqF8EPjp0t/fPfJGtqHGcHAAAAAEh2hEQY8kZKSNTu9mjeHe+qzuHyX7vq5MN0S8s90pevBD88/xrpO7+J8wwBAAAAAMksVj9/J2XjaqA3aVaLlh4X/BvspU8r5Vr8Wyn/sOCH1/xO2vpmHGcHAAAAAEBsEBIBYXxvzrig19XN7XpvV5t0/lOSpVt52fJ/ler3xm9yAAAAAADEACEREMa0kiwdNz436Nrz68ul0UdL3+m2U11bvfTSv0gelwAAAAAAGK4IiYAeXDh3fNDrldsOaV99qzTnx9Ksc4MfrlgvvXaN1FItAAAAAACGI0IioAeLjxytzLSu3eC8hvSv//uJr6H12Q9KeROD37DpL9L9R0n/+H+ERQAAAACAYYeQCOhBRppVZx09Juja5xUNunDZWh1ypYXvT+RqkT58QLr/SOnvt0nNVfGbMAAAAAAAg0BIBPTihm9NVWFmcBC07WCTLnh0jSps06Vzfi+ZU0Lf6HJIHz0oPXCU9PdbCYsAAAAAAEMeIRHQi5LsdL1w5XyNyUkPur67xqELHl2jXWMWS1d/LB39A8lkCR3A5ZA+esgXFr39S6n5UJxmDgAAAABA/xASAX04rChTL1w1XxMK7EHX9zW06fxH12irq0ha8oh0zXrpmIt6DovW/M7Xs4iwCAAAAAAwBBESAREozbPrxSvna1pJZtD16uZ2fe+xtfqsvF4qmCyd+7B07QbpmB+GD4vcrcFhUdPB+HwDAAAAAAD0gZAIiFBxdrqev2K+jirNCbre0OrSRY+v1dqdNb4L+YdJ5/4+srDogaOkt/6dsAgAAAAAkHCEREA/5GWk6s8/PkFzJ+YHXW9xenTJk+u0cltAGZk/LPpEOransKhNWvv7jrDoF1LTgRh/BwAAAAAAhEdIBPRTVnqKnv6XufrG1MKg6+1ury5/ZoP+9sX+4DfkT/LtgnbtJ9KxP5LM1tBB3W3S2oelB46W/nYLYREAAAAAIO4IiYABsKVa9IdLZus7h5cEXXd5DF397Kd66ZOK0DflT5LO+Z0vLDru4p7Doo8f6QiLfi417g99BgAAAACAGCAkAgYozWrR739wnJYeOzbouteQbnzxc/1pze7wb8ybKJ39UARh0aOERQAAAACAuCEkAgbBajHrvvOP1kUnjA+5d9trX+qRlTt6frM/LPpUOu6S8GGRp70rLHrzZqlxX/QmDwAAAABAAEIiYJDMZpN+fe4RuvLkw0Lu3f3WVt339jYZhtHzAHkTpLMf9IVFx1/ac1i07jHpgWOkN28iLAIAAAAARB0hERAFJpNJt5wxQz87fVrIvd+tKNOv/vqVvN5egiLJFxad9YB03Ubp+H+WzCmhz3japXXLfCuL3rhRaqiM0ncAAAAAAEh2hERAlJhMJl37zam67cxZIfee+mi3rn1uo74+2NT3QLnjpbPul677tJewyCmtf1x68BjpuR9IHz4g7VkjuVoH/X0AAAAAAJKTyei1DgaIXEVFhcaNGydJKi8vV2lpaYJnlDjPr9+rW175QuF+d80/rEAXz5+g02eVyGqJIKetL5c++B/p0z9JXlfvz5pTpNFHS+Pm+o7SuVLO2N7fAwAAAAAYVmL18zchEaKGkCjYXz/fp58+/5ncPZSZjc5J10UnjNeFc8erMDOt7wHry6UPfit9+kzfYVGg7NKu0GjcXGnUUZIlzOokAAAAAMCwQEiEIY+QKNS7Ww7quuc2qsXp6fGZVItZi48arYvnT9Ax43JlMpl6H7Shoiss8jj7PymrTRpzbEdodILva0Zh/8cBAAAAACQEIRGGPEKi8A42tul/1+7Rc+v2qrq591DnyLE5unj+BJ119Bilp1h6H7jpoLTjPalinVS+Tjr4paQB/nbOP8wXGJXO8X0tnimZ+/h8AAAAAEBCEBJhyCMk6l2726O/fXFAT6/ZrY1763t9Ns+eou/NGa8fzhuv0jx7ZB/Q1ihVfuILjCrWSeXrpfaGgU02NUsqPb4jOJorlc6WbLkDGwsAAAAAEFWERBjyCIki90VFg55Zs1uvfb5PTre3x+fMJumbM0t0yfyJWjCloO9StEBer1S9zRcala+Tyj+WarYPcMYmqWiGNG5OV3BUOFXqz3wAAAAAAFFBSIQhj5Co/2pbnHphQ7n+tGaPKut7377+sKIMXTJ/opYeN1ZZ6QNsPO2olSrW+wKj8nW+lUcux8DGsuX5wqLO4GjMcVJa5sDGAgAAAABEjJAIQx4h0cB5vIbe23pIz6zZrfe3V/f6bEaqRUuPK9XF8ydoaknWID/YLR36smulUfk6qX7PwMYyWaSSw7uaYY+bK+VOYLURAAAAAEQZIRGGPEKi6NhR1aw/rdmjlz6pUHO7u9dnT5xcoIvnT9S3ZhbLajFHZwJNBwL6Gq2T9m0c2C5qkpRZ0tUMe9wJ0uijpZT06MwTAAAAAJIUIRGGPEKi6Gpud+vVjZV65qPd2n6ouddnx+Sk66J5E/S9OeNUmJkW3Ym426X9m3wrjSrWSXs/lpoPDGwsS6ovKArcSS17dHTnCwAAAAAjHCERhjxCotgwDENrdtbomY/26O9fHZC3l9+xqRazzjxqtC4+caKOGZcbqwlJDeXBDbEPfCEZnoGNlzM+oCH2HGnUkZJlgD2XAAAAACAJEBJhyCMkir3K+lY9+/Ee/WVduWpaei8BO7o0RxfPn6jFR41WeoolthNztvjK0so/lso7GmO31g5sLKtNGnt88E5qGQXRnS8AAAAADGOERBjyCInip93t0Ztf7NfTH+3RZ+X1vT6bn5Gq780Zp4tOGK/SPHt8JmgYUu3OjtCoIzg69JWkAf5xkz85uCF20QzJHOPgCwAAAACGKEIiDHmERInxeXm9nlmzR3/dtE9Ot7fH58wm6VszS3TJiRN14uQCmeK961hbg1T5SVeJWsUGqb1xYGOlZXesNuoIjkpnS+k50Z0vAAAAAAxRhEQY8giJEqumuV3PbyjXn9fuVWV9a6/PTi7K0GkzinX8hDwdNz5PxdkJ2HHM65GqtnUERh0lajVlAxzM5FtdVDhVyh3vO3LGdZyPI0ACAAAAMKIQEmHIIyQaGjxeQ+9uOahn1uzRB2XVEb1nXL5Nx4/P84VGE/I0vSRLVos5xjMNo6WmKzAqXyft+1RyOQY/blpOV2DUPUDKnSDZ8qR4r6wCAAAAgAEiJMKQR0g09JQdatKf1uzRS59UqMUZ+e5jGakWHTM+V8eN94VGx43LU449ATuOeVzSwc1dzbDL10kNe6P/OSkZPQdIOeOkzGJCJAAAAABDBiERhjxCoqGrqc2lVzdW6pk1e1R2qHlAY0wtzvSvNDp+Qp4OK8yIf18jSWrcL1Ws6+httE7a/5nk6X2nt0Gzpks5peEDpNzxUtYoGmkDAAAAiBtCIgx5hERDn2EYWrerVh/tqNGne+u0cW+9mtvdAxorz57iX2l0/IQ8HV2aK1tqAoISV5u0/3PfiqOGcql+r1Tf8bX5QHzmYLZ2C5G6rUjKHitZErASCwAAAMCIREiEIY+QaPjxeA19fbBJn+yp06d76vTJ3jrtqRlYDyCr2aRZY7KDgqMxOemJWW3UydUmNVZ2BEd7O0Kk8q7zxkrJ6HlHuKgxmaWsMWH6InWuSCqVrGmxnwcAAACAEYGQCEMeIdHIUN3c7g+MPt1Tp88rGuR0DyxIGZWdHlSiNmt0tlKtCWiI3ROPS2rcFyZA6gyVKiWvKz5zyRwVpi9SQJiUmhGfeQAAAAAY8giJMOQREo1MTrdXX+5r8K022lunDbvrdKipfUBjpVnNOro01x8aHTc+VwWZQ3gFjdcjNR0IKGPbG1zS1lAuudviMxd7QQ8BUsfqpPSc+MwDAAAAQMIREmHIIyRKDoZhqLK+NahEbcv+Jnm8A/ujZGKB3R8aHT8hT1OLs2QxD5OdxAxDaqnqCpDClbQ5B9YovN/Sc6Sc8T2XtNny2KENAAAAGCEIiTDkERIlL4fTrc/LG/Tp3jp9ssd3NLQOrEwrK82qY8bn+kOjY8blKit9mDZ9Ngypta6HAKnjWltDfOaSkhEmQApYkZRZTIgEAAAADBOERBjyCInQyes1tLO6xbfSqGO1Udmhga2oMZmk6SVZ/tDo+Al5Gp9vT2xD7Ghqa+gqXQtX0uaojs88rOm+BtrdA6TO11mjJHMCdq8DAAAAEIKQCEMeIRF6U+9wauPeev9Ko88r6uVwegY0VmFmatAuakeOzVF6yggNMJwtUkNFzyVtzQfiMw9zipQztiNAmhC6Iil7jGQZpiu+AAAAgGGGkAhDHiER+sPt8WrrgaagErWKutYBjZViMenwMTlBq41KstOjPOMhytUmNVb23BOpsVIyBrY7Xb+YzFL22IA+SN1L2kol6xBuUg4AAAAMI4REGPIIiTBYBxvbgkrUNlc2yOUZ2B9RY3NtQaHRjFFZslrMUZ7xMOBxSY37wuzM1hkqVUregfWP6rfMUV19kcKVtKXa4zMPAAAAYJgjJMKQR0iEaGtzebS5ssG3k1rHiqPqZueAxrKlWHTMOF9D7OMm5Oq48XnKtadGecbDkNcjNR0I7okUuCKpoVxyt8VnLvbCnhtr546X0rPjMw8AAABgiCMkwpBHSIRYMwxD5bWt+mRvbUeJWr22HWiUd4B/ik0uytDRpbk6rChDkwozNakwQxML7bKnWqM78eHMMKSWqp57ItXvlVwt8ZlLek5XaJRR6AuV/F8Lgl+nJEm5IQAAAJISIRGGPEIiJEJTm0uflzf4S9Q27qlTU7t7UGOOzknvCI584dFhhb7z0jxbcpas9cYwpNa68DuzdZa0tTXEf16pmZK9oFuY1P11QLiUmuHbSg8AAAAYBmL18zf/uxzAsJaVnqKTphbqpKmFkiSv19D2Q83+Ztif7q3Trur+rXTZ39Cm/Q1t+rCsJuh6isWk8fl2X3DkD5EydFhRhooy02RKxpDBZJLs+b5jzDHhn2lr6CpdC7ciyVEd/Xk5m31H/Z7Inremh1+RFPK640jLJlQCAADAiMNKIkQNK4kwVNU0t2vj3np90tHX6PPyerW7o7vjV2aa1R8adQZHhxVmamKhXVnpbA3fK2eL1FDRc0lb84FEzzCUOaWXIClMsJSeK5lZhQYAAIDooNwMQx4hEYYLp9urLfsbtXFvnXZUtWhXte+orG+NyecVZaX5gqOO8Kiz/9H4fLtSrQQHfXK1SY2VXQFS036ppdq3AqmlWnLUdH01PImebXgmS8eKq55K37q9tuVLFhb7AgAAIDzKzQAgSlKtZh09LldHj8sNut7q9Gh3TVdotLOqRbuqm7WzukX1joFvE1/V1K6qpnat21UbdN1sksbl2zt6HmVqUlGGv//RqOx0mc2UM0nyNaEumOw7euP1Sm31AaFRdcDXmvCvPQPbLa/fDI+vAXhLlVQVyRtMki23j35KAef2AsnKbn0AAAAYHEIiAOhgS7Vo5uhszRwdutV6XYtTO6s7A6TmjgDJdwy0dM1rSHtqHNpT49CKbcHJgS3FoomFXaFRYAlbjp3ytbDM5q7+SIVT+37eMKT2ph5CpOpuYVPHfZcj9t+Hb3K+huCtdVLN9sjekpbTrdStl0bdGYVSii223wIAAACGHUIiAIhAXkaqjs9I1fET8oKue72G9je2aVdVi3Z2C48q6hzyDrCgt9Xl0Zb9jdqyvzHkXn5GalD/o8kdJWwTCuxKT7EM7AOTkckkpWf7jvzDInuPs6Xv1UmBr51Nsf0eArU3+I7anZE9n5IRWT+lzrApNZNm3QAAACMcIREADILZbNLYXJvG5tr8O6x1and7tLfG0bUCqSNA2lndourm9gF/Zm2LU7UtTn2ypy7ouskkjcmxdaw46giRijJ1WGGGxuTaZKF8bfBSM3xH3oTInne1+VYkhV2dFOZ1W31Mpx88txapvsXX5ykSlrQI+ikVdV1LzyFUAgAAGGYIiQAgRtKsFk0tydLUkqyQew2tLu2u7gqNfD2QmrWrukUO58CaLxuGVFnfqsr6Vr2/PXhb+VSrWRML7B2rj3zB0aQiX5BUkJEqEz/Mx0ZKupQz1ndEwuOSHLU9r1BqqQoOlhy1kuK0/4Sn3ddAvLEysufNKQEBUh+Nuu2Fki2PHeAAAAASjJAIABIgx5YStnm2YRg61NTuL1vrDI52Vbdob61D7gHWrzndXn19sFlfH2yWdDDoXna61b/iKLD/0aTCDNlT+c9EXFlSpKwS3xEJr8fXtyjSRt2OGsnrju334J+bS2o+4DsiYTL7dnXrsfSt22t7ATvAAQAARBl/uwKAIcRkMqkkO10l2emaP7kg6J7L41VFXas/ONoZUMJ2oLFtwJ/Z2ObW5+X1+ry8PuTeqOz0jrI1XwnbYR39j0rzbEqxsOoj4cyWrl3OImEYvpK2Pht1B7z2DLw0sl8Mb0eQVd33s53Sc8OvUMooChMsFUjWtJhNHwAAYCQgJAKAYSLFYvav9Omupd3tX3G0K6CMbWdVs5raBr5y5EBjmw40tmnNzpqg61azSePz7QGrjjL958VZaZSvDVUmk6+sy5YnaUrfzxuG5GzuKHXrvlop0TvAyRd4tdVLNWWRPZ+W3a3UrZdG3fZCKdUey9kDAAAMOYREADACZKRZdcTYHB0xNifoumEYqmlx+htn+/of+XZh21PjkNPjHdDnub2GL4SqbtG7W7vNJdXS0e+oIzjyN9HOUHZ6ykC/RSSCySSlZfmO/EmRvcfp6GV1UvdSuBqpPXQHv5hpb/Qddbsiez7FHn5FUvd+Sp3307Jo1g0AAIY1QiIAGMFMJpMKM9NUmJmmORPzg+55vIb21bd2lK01BzTQbtG+hlYZA+yH3OL0aHNlozZXhv7wX5iZFhQaTSrM0OSiDI3LtyvNahnYB2JoSbVLqeOl3PGRPe9uD78iKTBcStgOcA6pYa/viIQlrSNECrNCKVywlJ5LqAQAAIYUQiIASFIWs0nj8u0al2/XwmlFQffaXB7tqXFoZ0B41HnUtjgH/JnVze2qbm7Xut21QdfNJqk0z+4vpyvNs3UcdpXm2ZRjS6GEbaSypknZY3xHJPraAa7769ZaX7+jePC0S037fEckzFZfqBS4Gsle0FESmNtVGhh4pOdK1tRYfhcAACCJERIBAEKkp1g0fVSWpo/KCrlX73AGNc32N9Gublaba2A/jHsNaW+tQ3trHVr1dVXI/YxUiz8wCgyPxnac59kJkZLGgHaAq4+8UbejOo47wLml5oO+oz9SMgKCo9wezrsFS7Y8KTWDlUsAAKBXhEQAgH7JtafquPGpOm58XtB1r9fQgca2oJ3Xdlb7dmIrr3XIO8DyNclXwrbtYJO2HWwKe9+eagkKj0rzbBqb23Wen5FKiJSszBbfKp2MAqloet/PG4bU1tAVGrVUDZ0d4Dq5WnxHY0X/3mdOCRMi5fZ8rTNcSs/x/ToCAIARj5AIABAVZrNJY3JtGpNr04IpwVuyO91e7a11dPQ8ag5YfdSiqqbB/4DtcHr09cFmfX2wOex9W4olaBXS2G4rkgoIkdDJZOoISXKlgsl9Px+4A1yfjbo7XrtaYv1dhOd1SS2HfEe/mHxBUaQrlgKfs6ZF//sAAAAxQ0gEAIi5VKtZU4ozNaU4U1JwmVBTm0u7qx3a2bHrWnmdQxV1raqsa9X+htZBrUDq1OryaPuhZm0/FD5ESk8x+8KjXFvIiqTSPLsKMwmR0IOB7ADnau05RGqt63bU+746w/+7Gx+Gr2F4W33kO8N18pfG5YYPmEKCpTxK4wAASCBCIgBAQmWlp+jI0hwdWZoTcs/l8epAQ5sq6lpV0REeBZ4faGyTJwopUpvLq7JDzSrrIURKs5r9/Y+690UqzbOpKDONEAmRS7FJueN8R6TcTl8ZXEiIVOcLb8Jdb63zvSdejbvDGVRpXG6EK5YCS+QojQMAYDAIiQAAQ1aKxezfgU0qCLnv9nh1oLEtJDyqqHOosr5V++qjEyK1u73aWdWinVXhy4RSrWaV5tp6DJKKMtNkNhMiYRCsqVJmke/oD69Xam/sJViq72H1Uq3kGfhOhoPmdfn6QbWENrLvU1BpXB8rlgIDJkrjAAAgJAIADF9Wi7kjiLGHve/2eHWwqV0VtcGrkCrrfef76lvljkKI5HR7tbOjz1I4qRZzQB8kW0hpW3EWIRJixGzu6rGkCMvhJF+vJVdr5CuWWusDSuPCN5iPm7YG31G3u3/vS7F3C5bChE3hSuZSMymNAwCMGIREAIARy2oxa2yuTWNzbTohzH2P19DBxq5ytsrOIKne4Q+RXJ4ohEger3Z1NOoOJ9Vi1pjcdP/Ko7G5NpXmd61EKs5Kl4UQCfFkMkmpdt+RM7Z/7/W4ugKjHoOlMNfb6hNcGufwHY2V/Xuf2RrBiqUw1ymNAwAMQYREAICkZQnYkW3upPyQ+x6voUNNbf5G2t37IlVGMUTaXePQ7hpH2PspFt88/QGSv6TN97UkmxAJQ4glZXClcb0GSz3c8wx+l8QB87oHVxrXn2CpM4hKSY/yNwEAgA8hEQAAPbCYTRqdY9PoHJvmTAy97/UaqmpuD9tUuzNYcnoGvzLC5TG0p8ahPT2ESNaOsCvs7mz5dpVkpclqMQ96HkBMBZbG5U3s33u7l8b1tmKp83pbvS+USqTO0rj6Pf17n9XWQ6CU20Pg1BEupWVRGgcA6BUhEQAAA2Q2m1SSna6S7HQdPyH0vtdrqLq5XeXdw6P6rtdO9+BDJLfX0N5ah/bWhg+RfGFXercAqau0bXROOiEShrcUm+/IHtO/93lcYXaNq+9lt7iAe4ksjXO3Sk2tUtO+/r3PbA2zcqn76zClc+k5koUfGwAgGfCnPQAAMWI2m1Scna7i7HQdPyEv5L7Xa6i6pT1o5VHgDm0Vda1qj0KI5PEa/s+QakPuW8wmjcruHiL5dmsbl2fXqJx0pRAiYSSypEgZhb6jP7xeX4PuXoOl+tDSOUdt4kvjHNW+o7/SciJfsRT4mtI4ABhWCIkAAEgQs9mk4qx0FWel67jxoSGSYRiqbnYG7cjWvbStzRWdEKmy3rfC6eNdoSGS2SSNzrF17dDWrS/S6FxCJCQZs7mjn1DOIErj6vterRQYOCW6NK69wXcMuDQuN/zqpZ56MlEaBwAJQUgEAMAQZTKZVJSVpqKsNB3bQ4hU0+Ls2pWt2yqkirpWtbo8g56H15A/RFq3K/S+2aSOlUj2riApYFXS6BybUq2ESICkQZTGucOUxvUWLAUETMbg/xwYsIGWxpkskZXChds1jtI4ABgw/gQFAGCYMplMKsxMU2Fmmo4elxty3zAM1TlcYcOjyrpWldc55HBGJ0Ta19CmfQ1t0u5w8/SFSIGNtScU2DWxMEMTCuwqykyTiRUDQO8sVimjwHf0h2FI7U0RBEv1oefu1hh8I5HO2yM5anxHf6VlhwZMncFSRqFkL/T9OtoLJXuB71qKLdrfAQAMS4REAACMUCaTSfkZqcrPSNVRpbkh9w3DUL3DFRQgBTbVLq91qCUKIZJhSPsb2rS/oU0b9tSF3M9ItWhCQYYmFtp9XwvsmliQoYmFGSrOIkACBsVkktKzfUdemA77vXG1BodHfa1Y8pfGNUT/++iP9kbfUb838vekZHQFR0FBUrhrhZTDARixCIkAAEhSJpNJeRmpystI1ZGlOSH3DcNQQ6srTC+krtfN7e5Bz6PF6dFX+xv11f7Qniu2FIsmFHStPJpY4Ft9NLEgQ6Oy02U280MaEDP+0rjR/XtfYGlcRMFSwJGo0jhXi1TfEnmwZEkNCJB6CJI6VynZC32rmMyU3QIY+giJAABAWCaTSbn2VOXaU3XE2PAhUmOrWxX1jpDwqPO8qW1wIVKry6OtB5q09UBTyL00q7kjQPKtPvJ99YVIY3JtshAgAYkx2NK4HoOl+p4DpniXxnmcUtN+3xEJk1my5XeFRvaA84xugVJGoe9Za2psvwcACIOQCAAADIjJZFKOPUU59hwdPiY0RJKkhlZXR2PtjhK2OofKa1u1p6ZFe2odcroHvjtbu9urrw826+uDzSH3Ui1mjcu3dYRGvlK2iR0h0pjcdFnZjQ0YegJL43LH9++9rraed4brPO/sceSokVqqfV/jtXLJ8EqOat8RqbScbquUCrq+hguXUu2xmz+ApEFIBAAAYibHlqIcW4pmjckOuef1Gtrf2KY91S3aXePQnpoW7a5p0e5qh/bUtqjNNfAAyenxakdVi3ZUtYTcs5pNGpdv95etTSywa0JHKVtpnk0pBEjA8JOSLqWMkrJGRf4er9cXLAWGRo7qrvOW6oDXtb5zd1vMvoUQ7Q2+o3ZnZM+n2CNbpWTv6LWUnkNfJQAhCIkAAEBCmM0mjc21aWyuTSdOCb7n9Ro61NSu3TUt2lPTol3VnSGS7+tgdmVzew3tqm7RruoWSVVB9yxmk0rzbN1K2Hz9kErzbEqzWgb8uQCGGLPZF6jY86XCqX0/bxiSs6UjOOoWKIVc63jtDC2VjRmXQ2rY6zsiYU4JXp0UtEqpe5+lzr5K/BkIjHSERAAAYMgxm00alZOuUTnpmndYcF8TwzBU1dyu3dUOf4jkX4lU7RhUM22P19CeGof21Di0uvucTNKYXFtQ82xfM227xuXblZ7CD0/AiGYySWmZviNvYmTvcbd3W5XULUhy1ARfa62TZMTyu+jidUnNB3xHREy+oKh7g25/n6WC0Gv0VQKGHUIiAAAwrJhMJhVnpas4K11zJ+UH3TMMQzUtTn9g1Bkg7a7xrRwaTCNtryF/U+4PyrrPSRqdnd7R/yhgFVKhXRPyM2RLJUACkpI1Tcoe4zsi4fV0lbb1Gi7Vdp17B7/LZGQMqbXWd+jryN6Slh3BKqWA3eBSMyiBAxKMkAgAAIwYJpNJhZlpKsxM0/ETQgOkeoerY/WRQ7uqg1ch1TlcA/5cw5D2NbRpX0Ob1uysCbk/Kjvdv/poQkAT7QkFdmWk8dcxAB3MFimzyHdEwjCktobgQCmwx1JQX6WO1/HcCa690XfU7YrseWt6D6uUuvdZ6ngmPZdQCYgy/lYCAACSgslkUl5GqvIyUnXs+LyQ+w0dAVJniOT/Wt2imhbnoD77QGObDjS26eNdtSH3irLS/CuPJhV2lbJNKLArKz1lUJ8LYIQzmSRbru8omBzZe5yOXhp014SuYGpviOV3EMzdJjVW+I5ImK1djbjDNejuvhucLV+y8CMw0Bt+hwAAAEjKsafoaHuujh6XG3Kvsc2lvQHBUeAqpKqm9kF9blVTu6qa2rV+d13IvYKMVF9oVJgR3AupIEM5dgIkAAOQapdSx0u54yN73u3sCo/62v2tpdpXjmYMfHfKfvG6peaDviMiHaFa953eetsNzpoWy+8AGHIIiQAAAPqQnZ6iI8bm6IixOSH3Wtrd/pVHu2tatKe6K0w60Di47bJrWpyqaXHq0731Iffy7CnBu7AFlLHl2lNkogQDQDRYU6Xs0b4jEl6P1Fof2e5vnfc8g1utGTnD1xy8tU6q2R7ZW1IzI1ul1HktNZMSOAxrhEQAAACDkJFm1awx2Zo1JjvknsPp1t5aR3AT7Y5VSPsaBhcg1TlcqnPU67Py+pB72elWTSzM8IdIEzubaBdkqCAjlQAJQOyYLb5+QRkFUtH0vp83DKm9KbLd3zqfcbXE/vvo5Gz2HfV7InvektbDKqXuDbs7nknPlczmmH4LQH8QEgEAAMSIPdWqGaOyNWNUaIDU5vKovNbhD44CeyFV1rfKGMQu2I1tbm2qaNCmitBeIplp1oASto5VSB1hUlFWGgESgPgymaT0bN+Rf1hk73G1Rr77W0u11FYf028hiKddaqz0HZEwWXyNuXtcpRSmibeFcmPEDiERAABAAqSnWDS1JEtTS7JC7rW7PSqvbQ3afa0zTKqoc8g7iACpud2tL/c16st9jSH37KmWoBK2aSWZ+sbUIhVl0ZMDwBCSYpNySn1HJDyurr5Jfe3+1tl/yfDE9nvoZHiklirfURXhe9JzQnd6sxdKGUW+1Vujjop8hzygG0IiAACAISbNatGU4kxNKc4Mued0e1VZ39rR/6gjPOpYhVRe65B7EAmSw+nRlv2N2rI/OEA6ujRHp84o1jdnlOjwMdkym1ltBGAYsaRIWSW+IxJer2/1UZ+7vwWES57BbWLQL20NvqN2R8/PZI6SRh0ZcBwl5U/ylQMCvTAZxmAWMwNdKioqNG7cOElSeXm5SksjTPYBAEBUuD1e7atv066ajt3X/L2QWlRe2yqnZ/A7DhVlpenU6UU6bUaxTppapMw0/p8jgCRnGJKzpYcG3d12f+t8xtkU/3mmZEglh0ujjugKjopn+Xa8w7ATq5+/CYkQNYREAAAMXR6voX31rf6+R3tqWrSrI0TaU+uQ093/ACnFYtIJkwo6VhkVa2JhRgxmDgAjkKuta3e3sA26u61caq2TFIMf3U1mqWBK6KqjzOLofxaiipAIQx4hEQAAw5PXa+hAY5t2B6w+KjvUrLU7a9TijLwvx2GFGTp1RrFOm1GsORPzlWplxx4AiAqP2xcU9bb7W/1e6dBXkssx+M/LLAlTrnYY5WpDCCERhjxCIgAARpZ2t0frd9Xpva2H9N7Wg9pdE/kPHplpVn1jaqFOnVGsU6cX0/waAOLB65Fqd0oHNkkHvpAObPZ9bT4w+LFT7L7ytMDgqGSWlMoq0kQgJMKQR0gEAMDItrOqWe9tPaQV2w7p4521/WqS3dn8+rQZxTpiTA7NrwEgnpoPdYRGAUfNdskYbK86U7dytaN8XyNtEo4BIyTCkEdIBABA8mhqc+mD7dUdoVGVqpsj39mH5tcAMAQ4HdKhLQGrjr6QDm6OTrlaRnFouVrBZMrVooiQCEMeIREAAMnJ6zX0RWWDf5XRpoqGiN+bYjFp7qR8nTajRKfNKNYkml8DQOJ4PVLtrtDgqGn/4Me22nzlaYHBUfEsKS1z8GMnIUIiDHmERAAAQJIONbZp5bYqvbf1kN7fXtWv5teTCjN06vRifXMmza8BYMhorpIOditXq/46SuVqk0PL1TJLJBNlyb0hJMKQR0gEAAC6c7q9Wr+7Vu9u8a0y2lXdEvF7M9OsOmlKoU6bWaxTphepOCs9hjMFAPSLq9W3m1pQr6PNkivyP+d7lFHUrUH2Eb7eRxbKkzsREsXJzTffrHvvvdf/esWKFTrllFN6fc9bb72lZcuWad26daqqqlJRUZHmzp2rK664Qt/97ncj+lyHw6Hf//73evHFF1VWVian06lx48Zp8eLFuu666zR+/PiIxvnyyy/10EMP6Z133lFlZaUyMzM1c+ZMXXTRRbrssstktcbuNxUhEQAA6Etg8+t1u2rl8kT+V9GjSnP8q4xofg0AQ5DXK9V1K1c78EWUytXSw+yudnjSlqsREsXB559/rtmzZ8vtdvuv9RYSGYahq666SsuWLetxzCuuuEKPPvqoTL0slduxY4cWL16sbdu2hb2fk5OjZ599VosWLep1/k888YSuvvpqtbeHbxw5b948vf766yooKOh1nIEiJAIAAP3R1ObSh2XVHauM+tf8ujAzsPl1obLSU2I4UwDAoLRUh+6uVv21ZERejhyeSco/LMzuaqNGfLkaIVGMeb1ezZs3T+vXr1dxcbEOHTokqfeQ6Je//KXuuOMOSdKxxx6rm2++WZMnT9aOHTt0zz33aOPGjf7nfv3rX4cdo7m5WXPmzNHWrVslSZdffrkuvPBC2Ww2rVixQnfeeaeam5tlt9u1Zs0aHXXUUWHHefvtt7Vo0SJ5vV6VlJTol7/8pU444QTV1tbq8ccf1yuvvCJJOvnkk7VixQqZzdGv7yckAgAAA+X1Gtq8z9f8+r2tA2t+7VtlVELzawAYDlytHburfRHcJNvZPPix7YWhwdEIK1cjJIqx+++/Xz/96U81Y8YMLVmyRHfeeaeknkOisrIyzZw5U263W7Nnz9bq1atls9n89x0OhxYuXKgNGzbIarVq69atmjx5csg4t99+u371q19Jku655x7ddNNNQffXrFmjk08+WW63W6eeeqree++9kDHcbrdmzpypsrIyZWdn69NPPw35rKuvvloPP/ywJOnpp5/WxRdf3L9foAgQEgEAgGg51ORrfr1i6yG9v71aze3uvt/UobP59WkzijV3Es2vAWDY8JerBYRGB76QGisHP7Y1XSqeGRwclRwupWUNfuwEICSKofLycs2aNUvNzc1asWKFVq5c6Q9uegqJAkOXNWvWaN68eSHPrF27VvPnz5ckXXPNNXrooYeC7rtcLhUXF6u+vl4zZ87U5s2bw67wueqqq/TYY49JkjZs2KDjjz8+6P6LL76oCy64QJJ055136pZbbgkZw+FwqLS0VHV1dTriiCP0xRdf9PXL0m+ERAAAIBY6m193rjIaaPPrc44ZozSrJYYzBQDEREtN6O5qVduiUK6m4HK1id+Qxof+bD8Uxernb/63iqSf/OQnam5u1iWXXNJnk2rJ14votddekyTNmDEjbEAk+XoATZ8+XZK0fPlydc/jVq5cqfr6eknSJZdc0mMJ2KWXXuo/7ywbC7R8+fKwzway2+3+IGnz5s3avn172OcAAACGmlSrWQumFOq2M2dpxY2naMWNp+i2M2fppCmFSrH03nOiud2tt748oJtf2qRzfvehXJ7BbtcMAIi7jALpsFOkE6+Vli6TfrJG+vd90hUrpbMfkuZeIY2fL6UOYFVQ7U7pq9ek934tPfkd6e+3Rnv2w8rIKcgboBdeeEGvv/668vPzg3Y1682uXbtUWelb7rZw4cJen124cKG2bdumiooK7d69W5MmTfLfe//994Oe68ns2bOVkZGhlpYWffDBByH3O8eZPn26Ro0a1etcOlckffDBB5o6dWqvcwcAABiKJhVm6LKTJumykyapud2tD7ZXdeyYVqWqpp6bX2890KSPd9bqpKmFcZwtACAmUtKlMcf6jk5er1S/O7RJdn/K1dY9Ln07fE/hZJDUIVF9fb2uv/56SdLdd9+toqKiiN63ZcsW//mMGTN6fTbw/pYtW4JCokjHsVqtmjx5sjZt2hT0HsnX+LqiomJAc+mvzs/pyf79UdjWEAAAoB8y06z67hGj9d0jRsvjNfSff/1ST6/ZE/ZZi9mkcfm2sPcAACOA2ewrH7PlSeYUyemQGvf5DkXYaSc/tJdwMknqkOjmm2/WgQMHdOKJJ+qyyy6L+H3l5eX+877q/jprBLu/L/B1RkaGcnNz+xxn06ZNqqqqUnt7u9LS0iT5gpvOMrbBzCUSge8HAAAYSjbsrtV/vv5Vj7ui5dhSdOfSIzWhgJ3PAGDEaa2T9qyRdn8g7X7ft3oo0lCokzVdOuxU6dv/FZMpDhdJGxJ98MEH+sMf/iCr1apHH31UJlPv9eyBmpqa/OeZmZm9PpuR0fUXkebm4K38Osfpa4xw43SGRNGaCwAAwHBUWd+qu/62VX/9fF/Y+xazST+aN0E3fGuqcu2pcZ4dACAmohUKjZvra1Y98SRp7PGSNS0m0x1OkjIkcjqduuKKK2QYhn7605/qyCOP7Nf729ra/Oepqb3/ZaMzzJGk1tbWsOP0NUZv40RrLpHoa/XR/v37NXfu3H6PCwAA0F8Op1uPrtyhx1bvVLs7fDPqhdOKdNuZMzWleHhubwwA6NBaL+0NCIX2bxKhUGwkZUh0xx13aMuWLRo/frz+4z/+o9/vT09P9587nc5en21v72qeaLMF18B3jtPXGL2NE625RIIt7QEAQKJ5vYaWf1apu9/aqoON4ZtUH1aUodsWz9KpM4rjPDsAQFQQCiVM0oVEW7du1Z133ilJeuihh4JKsCKVldX1f6P6KttqaWnxn3cvB+scJ5LSr57GidZcAAAAhrpP9tTpP1//Sp+X14e9n51u1Q3fmqYfzZ+gFIs5vpMDAAwcodCQkXQh0W9/+1s5nU4ddthhcjgc+stf/hLyzObNm/3n7733ng4cOCBJOuuss5SRkRG0oqavHb8CS7S6N34uLS3Vxx9/rJaWFtXX1/favLpznKKioqCysWjNBQAAYKjaV9+qu9/aqtc+67nv0EUnjNcN35qm/Az6DgHAkEcoNGQlXUjUWXK1c+dOff/73+/z+f/6r67O5rt27VJGRoZmzZrlv7Z169Ze3x94f+bMmUH3Zs2apZdfftn/3Lx588KO4Xa7tWPHjrBjZGZmaty4cSovLx/UXAAAAIaaVqdHj67aocdW71CbK3zfoW9MLdRtZ87StBL6DgHAkBWNUMiSFhoKpaT3/T70S9KFRNEwadIkjRkzRvv27dOqVat6fXb16tWSpLFjx2rixIlB90466ST/+apVq3oMiTZs2OAvFVuwYEHI/ZNOOknPPfectm3bpgMHDmjUqFFhxwmca7hxAAAAhgLDMPTaZ/t091tbtb+hLewzkwozdOvimTptRnG/dqkFAMQBodCwlXTF2k899ZQMw+j1CGxmvWLFCv/1zpDHZDLpnHPOkeRbnbN27dqwn7V27Vr/6p1zzjkn5C8wp5xyinJyciRJTz/9tAwj/G+ap556yn++ZMmSkPvnnntu2GcDORwOvfDCC5J8K5imTZsW9jkAAIBE2ri3Tksf+Ug3PP9Z2IAoK92qWxfP1Ns3nKxvziwhIAKAoaC1Xtr2lvT2L6XHFkr3TJKeu1Ba8ztp/+eKKCCypPkCoVP+Xbr0TemWvdKlr0un/FyauICAKE5YSTRAN9xwgx5//HG53W5de+21Wr16ddCOYa2trbr22mslSVarVTfccEPIGKmpqbruuuv0X//1X9qyZYvuu+8+3XTTTUHPrFmzRk888YQkaeHChZozZ07IOEuWLNHkyZO1Y8cO3XnnnTr//PM1efLkoGduuukm1dXV+c8BAACGkgMNbbr7ra16dWNl2Ptmk/SDE8brp9+apoJMek4AQEK11kt71/pWCe3+QDqwSTLClwX3iJVCQxIh0QBNmzZNN954o+666y5t2LBBCxYs0M9//nN/WHP33Xdr48aNknyhzNSpU8OOc9NNN+n555/X119/rZtvvlllZWW68MILZbPZtGLFCt1xxx1yu92y2Wy6//77w46RkpKiBx98UGeddZYaGxu1YMEC3XrrrZo7d67q6ur0+OOP+3sfnXTSSfrRj34Uk18TAACA/mp1erRs9U49umqHWl2esM8smFKg286cpRmjsuM8OwCAJKmtQdqzhlAoCZiMnmqcktjtt9+uX/3qV5J85WannHJK2Oe8Xq8uv/xyPfnkkz2Oddlll2nZsmUym3uu7CsrK9OiRYu0ffv2sPezs7P15z//WWeeeWav83788cd1zTXXyOl0hr0/d+5cvfHGGyosLOx1nIGqqKjw75pWXl4etPMaAABAoHqHUyu3Vemet7ZqXw99hyYW2PXLxbP0rZn0HQKAuPC4JUeN1FIl1e+V9nwYhVDopI5QaDahUBTF6udvVhINgtls1hNPPKHzzjtPy5Yt0/r161VdXa3CwkLNmTNHV155pc4444w+x5kyZYo2btyo3//+93rxxRdVVlYmp9OpcePGadGiRbr++us1YcKEPse5/PLLNX/+fD344IN69913tW/fPmVkZGjmzJm66KKL9OMf/1hWK//IAQBAfBiGoZoWp7YfbFbZoSZtP9TsO69qVlVTe4/vy0qz6rpvTtXFJ05QmtUSxxkDwAhjGFJ7ky/0aanu+Hoo4LzjevMh33lr7cA/i1BoRGAlEaKGlUQAACQnwzB0oLFNZR0h0PZDXaFQvcMV8Thmk/S9OeP1s29PUyF9hwAgPI8rNOTpKfxpqZLc4VdrDhqhUEKxkggAAAAJ5fUaqqxv9YVBh5oCAqFmNbe7BzX2/MN8fYdmjaHvEIAkYxhSe2Pwip7ewp/WusTMk1AoKRASAQAAIIjb49XeWoc/AOoMhXYcaumxufRApFhMOnxMjq5aOFnfOZzt7AGMIG6n5AgIdpqreg9/POH7yiaOSbLnS0Uzu0Kh0jmEQkmAkAgAACBJOd1e7a5p6VgR1OQPhHZWtcjp6WeD0l6kWc2aXJSpqSWZmlqcqSnFWZpakqnx+XalWHre3AMAhgzDkNrqu5Vz9RL+tDUkesahUuxSRlHAUej7mlkc/DqjSLIXSGZ6wiUjQiIAAIARrs3l0Y6qZn/PoM6VQbtrHPJ4o9eeMiPVoikBIdDU4kxNLc7S2DybLGZWCQEYYtztYQKeqo6SrzC9fbyR91iLC5PZF+YEBT+9hD+pGYmeMYYBQiIAAIARorndrR2HfH2Cth9qUlnHTmJ7ax2K5lYl2elWTS3J6lgVlOk/H52TTskYgMTxegNW+xzqI/ypltqH4Gqf1MzgFT29hT+2PFb7IOoIiQAAAIaZBodLZVVdjaO3H2pW2cEm7WuI7g42hZmpHSuDfCuCphZnakpJpooy0wiDAMSHq63bip5w4U/HV0e15B1cE/2oM1kCQp+ewp/A1T72RM8YSY6QCAAAYIiqaW4PCoE6z6ua2qP6OaOy0zW1JDMoEJpSnKn8jNSofg4AyOv17c7V0r2XTw/hj7Mp0TMOlZrlC3XC9fLpftjyJDO91zB8EBIBAAAkkGEYOtjY7m8c7QuEfOVidY7o9r8ozbP5+gSVZGlKkW9V0JTiTGWnp0T1cwAkGVdrmCbOPYU/1ZIRvV0So8Jk6aGkq7Db9Y5rKbZEzxiIGUIiAACAOPB6DVXWtwZtKd8ZCDW1R688wmySJhRkdKwI6loZNLk4Q/ZU/uoHIAJeT/Bqn7CNnAPCH2dzomccKi07NPgJG/4USem5rPYBOvA3BQAAgCjyeA3trXVoe0d5WGcj6bJDzWp1Re//nlvNJk0qzOgoE8vqWCGUqYkFGUpPoZEpgG6cLcEreprDlHd1hj+OGsnwJnrGwczWbit6egl/7IVSSnqiZwwMS4REAAAAA+B0e7WnpsXXJ6ijPKzsULN2VrfI6Y7eD1epVrMmF3VuJ5/pD4UmFNiVYuH/fANJy+vxhTndt2kPG/5USS5HomccKj0nTDlXD+FPeq5Ew3wg5giJAAAAetHm8mhnVUtXz6CObeV3V7fI7Y3evvL2VEvITmJTSzJVmmeXxcwPRsCIZxgBq33C9PbpHv44aiRF78+gqDCn9NLLp3vpV6FkTUv0jAF0Q0gEAACSnmEYamh1aU+No6t5dEfPoPJah6KYBSkr3appHY2jO3cUm1qSpdHZ6TITBgEjh2H4Vu+01kuttaEre4LCn4577tZEzzpUem4fjZwDXqfnsNoHGOYIiQAAwIhnGIbqHS5V1LWqos6hyvpW/7nva6uao9g8WpIKMlIDVgb5gqCpxZkqykqTiR+igOHD65XaG3yNnP1HfbevHUdbt9ceZ4InH4YltWuXrr7CH3uBZE1N9IwBxBEhEQAAGPa6h0DdA6CKOodanLHZcrkkO01Ti7OCAqEpxZkqyKSMAhhS3O3BoU73QCckAOp8rkFDrqyrO1t+BFu4dxxpWaz2AdAjQiIAADDkGYahOoerxwCooq5VjhiFQJ3G5to0taQrBJrSEQzl2FJi+rkAAhiGb7v1ngKdoPCnPvg5V0ti594flrSOkKeo7/DHXiBZ+HMIQHQQEgEAgIQzDEO1Lc6g4Kd7SVisQyBJMpuk8fl235byJZn+vkGTizKVkcZfm4Co8bh9K3TCruYJcy3wOW90S0PjwyTZ80NX9fQU/qRmstoHQELwtx0AABBzhmGopiMEquyhJKzVFZ8QaHSOTWPzbCrNs6k0z97x1aZxeXaNyklnW3mgP1ytffflCdfHp70hsfMeKHOKL+yx5fkaOtvyuh253b52HGnZktmS4MkDQN8IiQAAwKAFhkA9lYS1ubwxn0dnCNQ9AOo8JwQCwjAMqb2xj9U89eHDH3dbgic/QKlZHUFObmjQ01v4k2JnhQ+AEY2QCAAA9MkwDFU3O8P2AvKVhcUnBLKYTRqdk94tBLJrbK6NEAjwuLrCnUjLuDobMxuxX8kXdSZzH6t5egp+cunhAwA9ICQCAAAyDENVze3+AChcSVi7Oz4h0JjcdJXm2sOWhI3KTpeVEAgjmWFILkcvgU646x3bszubEj37gbGm9xDq5PYe/qRmSWb+PACAaCIkAgAgCXQPgbqvCKqMUwhkNZs0uiMECikJy7erJCuNEAgjg9fr67vTU0+e3oIfjzPBkx+gtJyee/L0VsaVYkvsvAEAfoREAACMAF6voermdpX3EABV1scvBBqTawvpBVSa51sZRAiEYcfdHhzq9NmUOaCES0Zi5z4QZmtkvXm6hz/pOZKFHy0AYLjjT3IAAIYBr7dzJVBgANQVAlXUt8oZhxAoxdIVAvn6AAWvCCrJTpfFTFNXDDGGITmbI9xivT74OVdLYuc+UCkZ3QKd3MiCH7ZeB4CkRkgEAMAQED4EcgT1CHJ64hsC+UvC8rtCoOIsQiAkkMftW6ETaVPmwOe87gRPfiBMvhU6A2nMbE1L8NwBAMMRIREAAHHg9Ro61NQe0gy683xffVvcQqDgFUDBq4GKstIIgRB7rta++/KE6+PT3pDYeQ+UJbWP3jy54cOftBwaMwMA4oqQCACAKPB4DR1qausKgGpbg7aHr6xvlcsT+/4kqRZzwK5goSVhxVlpMhMCIRoMQ2pv7GM1T3348MfdluDJD1BqVkCYk9uPxsx2SrgAAMMCIREAABHweg0dDBMCVdT7VgTtS1AI1H1FUFEmIRD6yevxBTeO2sjLuDobMxueRM++/0zm/jdl7rxnSUns3AEAiDFCIgAAOrS5PKqoc2hPje/YW+vQnpoW7an1hULxKAdLtZpVmmvrCIKCA6BxeTYVEgKhN52rexw1UkuN72tfR2u9huUuXFZbmFAnN4LGzFmUcAEA0ANCIgBAUql3OP0BkD8E6nh9oLFNRox/Vk61mkNWAHWWhBECIYSrtSvMaan2rfbpK/QZbg2a03LC78LVVw+fFFti5w0AwAhESAQAGFG8XkMHGts6gh9fALSn1qG9Nb5AqLEttj9Ap1nNYVcBdZ4XZhACJS2PW2qt7Rb61IQJfgLCIJcj0bOOjNnaR1+eHsKftGzJwl9HAQAYKvivMgBg2OksC/OtBAouDSuva5XTHbuysLSQlUDBYVBhZqpMNKgd+bxe305bjnChT/fgp+N62zDYmSslo+fdtnor40rNpDEzAAAjACERAGBIanC4tKe2Jbg3UJzKwgoyUjW+wK4J+XaNL8jQhHy7JhTYNb7A1xiaEGiEMQzfip2g1Ty13UKfwOCnY6XPUG/abEmTMgole0GYIz/4ni3fd82aluhZAwCABCIkAgAkRGdZ2N7OUrCgQMihhlZXzD7bbJLG5tk0IT+jKwzK94VAEwoylJnGfx6HNbczuKzLv9InXA+fWl/oM9S3ZDdZfCGOvUCyFwacBxwZ3V6z7ToAAOgn/hYMAIiZdrdH5bWtXb2B4lgWZkuxdAU//pVAvlVBY/NsSrGwu9Gw4PX6tmUP16A5bCPnWl8Z2FCXnhMQ6BR2re4JCn0CrqflsCMXAACIOUIiAMCgNLS6glcCdZzvrXFof5zLwsZ3hEET8u0qyqIsbMgxDMnZ0tWjp3vAE66Rc2utZMQuTIyKFHu3kKcwuKyre+hjy5MsKYmeNQAAQAhCIgBAr7xeQweb2oICoMAt5OsdsS0LG5Nr860Cys/wB0DjC3zlYVnp/KCdUO72rnKtcA2bw4U+nvZEz7p3Zmto7x57974++V2hjy1fSrUnetYAAABRQUgEAFC726OKulb/NvH+LeNrHSqvdag9hmVh6Snm4N5AHQHQhIIMjc21KdVKiU1ceD1Sa33wblzdg5/uu3c5mxI9677Z8iIIfQIaOadl08cHAAAkLUIiAEgSPZWFlde2al9Da0zLwvIzUoNKwcYXZFAWFkuGIbU3BTdmDtewOTD0aa2TFMN/CaIhNTN8w+aeDlueZOGvOgAAAJHib04AMEJ4vYYONbWHrATa2/E6nmVhnYFQ51fKwgbJ1Ra+cXNvu3d5Y/fPOyrMKcGNmYMCnnC7d+VLKbZEzxoAAGBEIyQCgGGkp7Kwzv5AsS4LG58f0BuIsrCB8bh9q3aCAp6eGjl3fHW1JHrWfTCFD3VCdu8KuJ6WRVkXAADAEENIBABDTGNbR1lYwC5hnY2i41kW5guEfCHQhAK7iikLC2UYUltDmICnl0bObfWJnnXfUrOkjHAlXD3087HlSmZLomcNAACAQSIkAoA4C1cWtre2qzSsLsZlYaNzbAErgTK6AqECu7KTvSzM6QjfsLmn0MdRI3ndiZ517yypXcFO2OAnTBBkTUv0rAEAAJAAhEQAEENOt1fbDzXpy32N+rKyQV/ua9SW/Y1qcXpi9pldZWEBIVBHk+jSPHvyloW52qTGSt/RUCk1VkgNFR3nHdfaGxI9y96ZzL4t1zsDnUhCn9QMyroAAAAQEUIiAIgSh9OtLfsbOwKhRm3e16DtB5vl9ES/T1CePcW3Q1h+cG+gCQV2FWWmyWxOslDA45aaD/QQ/lT4vrZUJXqWodJyunr09NjEOaCRc3quZE7SkA8AAAAxR0gEAANQ1+L0hUH7fKuDNu9r0K7qlqj1C+osC/P3Byqwa0LAqqCkKgszDF8vn8aO4Kehouu8cwVQ037JiN3qrIhY04N35coI06w5sImzLU+ypiZ2zgAAAEAAQiIA6IVhGDrQ2KbNlV2B0Ff7GlVZ3zrosdOs5oAm0UlcFtbWEBD4lAevAGqokBr3SZ72+M7JZAnt05PRvWFzfnDok2qP7xwBAACAKCMkAoAOXq+h3TUt2tyxQuirfb7SsdoW56DHHpdv0xFjcnT4mGwdPiZHM0ZnqSQrfeSXhblafSFP9/DHHwJVSs6m+M4pNUvKKZVyxkrZYzvOS33n2WN9YVBaNmVdAAAASDqERACSUqwaSptN0pTiTB0eEAjNGpOtHNsILA/zuHxlXmHDn45zR01852RJCx/++L+OldJz4jsnAAAAYJggJAIw4sWqoXSq1ayZo7I0qyMQOmJsjmaMylJ6iiVKM08gr9fX6LmxIkz5V0cfoOYDkhH9ptw9MlmkrNG+oCdc+JMzzlf2xU5eAAAAwIAQEgEYUWLVUDorzapZHSuDDh+TrcPHZmtyUaZSLMOwJMkwpLb6nsOfxs4+QIMvs+uXjKIwK4DGStkdrzNLJAv/2QIAAABihb9tAxiWYtlQujAzTUeMzfaXix0+Jlvj8uzDp3+Q09Fz+Vfn7mCulvjOKS2nWx+ggPAnZ6yUNUZKSY/vnAAAAAAEISQCMOR1NpTuXBkUy4bSh4/JVnH2EA4rPC7fKp+eVgA1VEitdfGdkzU9TPlXaUAQNFZKy4rvnAAAAAD0GyERgCElsKH0V/satbmyIXkaSnu9UsuhjtU+5aHhT0Ol1HxQ0iBr5/rDbPWt8glcAZQzLng1kD2fPkAAAADACEBIBCBhkqqhtGH4VvgEloAFln81VkiN+yWvK77zyizpOfzJGeu7bx4BjbgBAAAA9ImQCEBcjPiG0u3NoeFP4AqgxkrJ5YjvnNJze2gC3VEOljVGsqbGd04AAAAAhixCIgBRNSIbSrudvpCnp/CnocK3W1g8pdjD9/7JKfWdZ4+R0jLjOycAAAAAwxohEYABi3VD6cNH53SEQjFsKO31+Pr8+MOfgPKvzhCo+WD0P7c35hRfyBO0AqijHKzz3JZHHyAAAAAAUUVIBKBfmtvdenfLQb2+ab8+KqseXg2l25ul/Z9L+zZ2HfV7JK87+p/VI5OUNSr8NvCdq4EyiiVznMvlAAAAACQ9QiIAfeoMht7YtF8rv66S0z2wxtLdG0ofPiZbM0Zly5Yag8bIrlbpwBfBgVDVNsV8ZzBbfs/hT/ZY3wohyxDaUQ0AAAAAOhASAQirpd2t97Ye0hub9mvFtkNq72cwFNeG0u526eCXAYHQZ9KhryRjcKucQqRmhu8D1FkKlj1GSrVH9zMBAAAAIE4IiQD4OZzBwVCbK7JgKK4NpT1uqWpL8Aqhg19KnkH2QbKkdvQBGtetD1DA7mDpOfQBAgAAADBiJSwkMgxDtbW1cjgcGjNmjCyWGJSbAOiTw+nWiq1VevOL/Xp368GIgiGr2aSTphZq8ZGjdfK0IpXEoqG05GsqXb09OBA6sElytw18TLNVKp4ljTnWd4w6SsodJ9kL6QMEAAAAIKnFNSTyeDx65pln9Mc//lHr16+X0+mUyWTSpk2bNGvWLP9zr7/+ulavXq2cnBz98pe/jOcUgaTQ6vRo5bZDev2L/XpvyyG1uvouy7KaTVowpVCLjxqtb88qUa49NbqTMgypdmdwILT/c8nZPPAxTWapcLo09riuUKjkcCnFFr15AwAAAMAIEbeQ6NChQzr33HP18ccfyzB6bxw7adIknX322TKZTFq8eLGOOeaY+EwSGMHaXB3B0Kb9em/rITki2JXM0hEMnXnkaH378CgGQ4Yh1e8NDoT2fSa1Nwxu3IKpXWHQmGOlUUdKaZlRmTIAAAAAjHRxCYm8Xq/OPvtsrVu3TmazWeeff75OPvlkXXPNNWGfP/zwwzV//nytXbtWr776KiERMEBtLo9WfV2lNzbt17tbDka0Xb3FbNKJkwu0+MjR+vbho5SfEYVgqHFft0Boo+SoGdyYuROCVwiNPtrXMwgAAAAAMCBxCYmeeeYZrVu3TikpKfq///s/fec735GkHkMiSTrrrLO0Zs0affDBB/GYIjBitLk8Wv11ld74Yr/e+SqyYMhskk6c7Csl+85gg6HmqtBAqPnAwMeTfE2jA1cIjTlWsucPbkwAAAAAQJC4hETPPfecTCaTrrzySn9A1Jdjjz1WkrRt27ZYTg0YEdrdHq3+ulpvfrFf//jqoJrb3X2+x2yS5k8u0OIjx+g7h5eoIDOt/x/sqJX2f9YVBlVulBor+j9OoIzibiuEjpGySgY3JgAAAACgT3EJiT777DNJ0tlnnx3xe4qLiyVJNTWDLEkBRqh2t0cfbK/WG5t8wVBThMHQCZMKtPio0fruEaNU2J9gqK3R10jav0LoU6lu98C/AUmy5UljjgteIZQ9hm3mAQAAACAB4hIS1dfXS+oKfiLhcrkkSWa2pAb8nG6vPiir0uudwVBb38GQySSdMClfi48ao+8ePkpFWREEQ84W6cAXASuEPpVqtg9u8mnZvr5BgauEcicQCAEAAADAEBGXkCgvL09VVVX9WhXUWWZWVFQUq2kBw4LT7dWHZdV644v9+vuXB9QYYTA0d2K+f8VQcVZ6zw+72qSDX/pWBu37zPe1aqtkeAc+6ZQMXyAUuEIo/zCJ0BcAAAAAhqy4hESzZs3SqlWr9MEHH+jUU0+N6D3PPvusTCaTjj/++BjPDhh6XJ6OYGjTfr3dj2BozgRfMHTGEaNUnB0mGPK4pENfBa8QOvSV5O17/B5Z0nxbzQeuECqcJpktAx8TAAAAABB3cQmJzj77bK1cuVIPP/ywrr76auXn974r0R//+Ee9/fbbMplMWrJkSTymCCScy+PVRztq9MamfXr7y4NqaHVF9L45E/O0+MjROuPI0SoJDIa8HqlqW3APoQObJU/7wCdptkolhwf3ESqeKVlSBj4mAAAAAGBIiEtIdOWVV+q+++7T/v37dfrpp+uZZ57R4YcfHvJceXm57rnnHj3yyCMymUyaOnWqfvCDH8RjikDCtLk8evDd7Xp23V7VOyILhmZPyNOiI0dr0ZGjNSonIBjyuKWtr0uf/FEqXye5HAOfmMksFc2UxgaUjBUfLqX0UroGAAAAABi24hIS2Ww2vfrqqzrttNP02Wef6aijjtL06dP996+66ipVVVXp66+/liQZhqGsrCy99NJLNK7GiPbVvkbd8PxGfX2wuc9njxufq8VHjdGiI0dpdI4t+GZbg/Tpn6SPH5Ma9g5gJiapcGrwCqFRR0qp9gGMBQAAAAAYjuISEknSnDlz9NFHH+mHP/yhvvjiC23dutV/78MPP5RhGP7XM2fO1PPPP68jjjgiXtMD4srrNfTkh7t0z1vb5PT03CD62PG5WtyxYmhMri30gdpdvmBo4/9KzqbIJ5A3KbiH0KijpPTsAXwnAAAAAICRIm4hkSQdeeSR+vzzz/XGG2/otdde04YNG3To0CF5PB4VFBTo2GOP1dlnn63zzjuPFUQYsQ42tulnL3yuD8qqw94/ZlxuR4+hUSrNC7OSxzCkvWukNb+Xtr3Z9y5kOeOkMcd0rRIafbRk770vGAAAAAAg+cQ1JOq0ePFiLV68OBEfDSTUW5sP6JZXNoXtPTRrdLZ++71jNH1UVvg3e1zSl8ultb/3NaLuzdjjpRP+VTrsFCmzaNDzBgAAAACMfAkJiYBk09Lu1n+9/pX+sr485J7JJF3xjcP0b9+epjRrmG3jHbXSJ09J6x6Xmvb1/CEmszTzLGne1dK4ub6BAQAAAACIECEREGOfl9fr+r9s1O6a0J3GRmWn638uOFonTikMfWN1mbT2Yenz53rfpSw1SzruYumEK6S8idGbOAAAAAAgqRASATHi8Rp6ZGWZ7n9nu9xeI+T+oiNH6Y4lRyrXntp10TCkXat9/Ya2v937B+ROkE64Sjr2hzSdBgAAAAAMWlRDIoslTKnMIJlMJrnd7qiPC8RSRZ1D//b851q3uzbkXkaqRbeffbj+6fhSmTpLwtzt0hcv+VYOHdzc++Dj50vzfiLNWCyZo/97DgAAAACQnKIaEgVuYw8kq9c+q9Str25WU3touHns+Fzd/71jNKEgw3ehpVpa/4S0/g9Sy6GeBzVbpVnnSvN/4mtKDQAAAABAlEU1JPqP//iPXu+/8cYb2rBhgyTp8MMP19y5c1VSUiLDMHTo0CGtX79emzdvlslk0uzZs7Vo0aJoTg+IqcY2l25bvlmvfRbaXNpskq49baquPW2KrBazdGiLr6Rs0wuSp73nQdNzpeMvleZeIeWMjdncAQAAAACIW0j0X//1X9qwYYOOPvpoLVu2THPmzAn73IYNG3TFFVdow4YNOvPMM3XbbbdFc4pATKzbVaufPv+ZKutbQ+6Ny7fp/u8do+PH50ll7/q2sN/xXu8D5k+W5v2rdMwPpNSMGM0aAAAAAIAuJiMONWLvvvuuTj/9dE2bNk2ffPKJMjJ6/6G3paVFxx13nMrKyvT222/rW9/6VqyniCioqKjQuHHjJEnl5eUqLS1N8Ixiz+Xx6oF3tuvhlWUK05taS48bq1+dcZiytr0srX1Eqt7W+4CTTvZtYT/125LZHJtJAwAAAACGtVj9/B2X3c0efPBBmUwm3XLLLX0GRJKUkZGhW265RZdddpkeeughQiIMSbuqW3TDXzbq84qGkHvZ6Vbdd0aJvt38V+nhJ6XW0AbWfpZU6Yh/8vUbGnVkDGcMAAAAAEDP4hISdfYhOuqooyJ+z9FHHy1JWr9+fUzmBAyUYRh6YUO5fvXXr+RwekLuX1Bap9uLVsr+9nLJ6+p5IHuBNPsyac6PpayS2E0YAAAAAIAIxCUkqq31raJoaAhdcdGTxsZGSVJdXV1M5gQMhMPp1r89/7ne+vJAyL3p5n16svgvGlu9QaruZZCiGb4t7I+6QEqxxW6yAAAAAAD0Q1yanowZM0aS9PLLL0f8npdeekmSNHr06JjMCRiIX766OWxAtLCgTm9k/Vpj6zf0/OYp35J++Ir0k7XS8ZcQEAEAAAAAhpS4hETf/e53ZRiGHnvsMb3wwgt9Pv/SSy/psccek8lk0qJFi+IwQ6BvG/fW6dWNlSHXrzguS39MuVfW9vrQN1nTpeMukX7ysfTDl6Up35RMpthPFgAAAACAfopLSPTv//7vys7Oltfr1fe//32de+65Wr58uSorK+VyueR2u1VZWanly5dryZIl+t73viePx6OsrCz94he/iMcUgV4ZhqE73twSdC0zzaonfnCE/r3hVzLX7w5+Q2aJdOqt0k+/lM5+UCqeEb/JAgAAAAAwAHHpSTR27Fi99tprOvvss9XU1KS//vWv+utf/9rj84ZhKCsrS6+99prGjh0bjykCvXr7y4Navzu4P9YNpx2mb275pVTZrcRs9DHSpW9IaZnxmyAAAAAAAIMUl5VEkrRw4UJt2rRJS5YskdlslmEYYQ+z2aylS5dq06ZNWrhwYbymB/TI6fbqrr8FryIal2/TpY4npS3dws6c8dIPXiAgAgAAAAAMO3FZSdRpwoQJevnll3XgwAGtWLFCX3zxherq6mQYhvLz83XkkUfq1FNP1ahRo+I5LaBXz368R7trHEHXHpn6iawfPxz8YFqOdNELbGcPAAAAABiW4hoSdRo1apS+//3v6/vf/34iPh6IWEOrSw+8uz3o2uXFW3X4pjuCHzSnSN/7k1Q8M46zAwAAAAAgeuJWbgYMRw+vLFOdw+V/fZRph25puUcmwxv84NkPSYdRHgkAAAAAGL4IiYAelNc69McPdvtfl5qq9Cf7/8jiaQt+8JR/l45hVRwAAAAAYHiLS7nZM888M6j3X3zxxVGaCRC5e9/eJqfHt2IoW816KvUe5XiCdzjTMRdJC29OwOwAAAAAAIiuuIREl156qUwm04DeazKZCIkQd5+V1+v/Pt8nSUqVS4+l3K8ppsrghyYtlM68Xxrgv9sAAAAAAAwlcWtcbRhGvD4KGBTDMHTHG51b3hu6K+Vxzbd8FfxQ8Sxfo2pratznBwAAAABALMQlJNq1a1efz7S0tGjbtm3685//rFdeeUUnnniili1bpoyMjDjMEOjy968Oat3uWknSv1lf1FLLB8EPZI6SfvCClJ6TgNkBAAAAABAbcQmJJkyYENFzs2bN0pIlS/Tcc8/pRz/6ka699lq98847MZ4d0MXl8equv22VJJ1vWanrrMuDH0jJkC56QcodF/e5AQAAAAAQS0Nyd7Pvf//7uvjii7Vy5Uo99thjiZ4OksizH+/VruoWnWT+QndYnwi+aTJL5z8ljT46IXMDAAAAACCWhmRIJEkXXHCBDMPQU089FfWxGxsb9Ze//EU/+9nPtHDhQk2ZMkU5OTlKTU1VcXGxTjnlFN1zzz2qqamJaLy33npLS5cuVWlpqdLS0lRaWqqlS5fqrbfeinhODodD9957r+bOnav8/HxlZmZq5syZuvHGG7V3796Ix/nyyy911VVXacqUKbLZbCoqKtLJJ5+sxx57TG63O+JxklG726MH3t2uDLXqgZTfKcXkCX5g0X3StG8nZnIAAAAAAMSYyRiiHaU/++wzHXfcccrJyVFdXV3fb+iHd955R6effnqfzxUWFup///d/9Z3vfCfsfcMwdNVVV2nZsmU9jnHFFVfo0Ucf7XV3tx07dmjx4sXatm1b2Ps5OTl69tlntWjRol7n+8QTT+jqq69We3t72Pvz5s3T66+/roKCgl7HGaiKigqNG+crwyovL1dpaWlMPidWPt5Zo+8tW6szzWv0u9SHgm8uuF46/T8TMzEAAAAAAALE6ufvIbuSqHP1jMvlisn448aN08UXX6wHHnhAr7zyitasWaMPP/xQzz//vM4//3xZLBZVV1fr7LPP1qZNm8KOceutt/oDomOPPVbPPfec1q1bp+eee07HHnusJGnZsmW67bbbepxHc3OzzjzzTH9AdPnll+vdd9/VRx99pN/85jfKzMxUQ0ODzj///B7nIUlvv/22rrjiCrW3t6ukpEQPPvigPv74Y/3tb3/T0qVLJUlr167V0qVL5fV6B/RrNtJtPdAkSVpo/jz4xvgTpW/eHv8JAQAAAAAQR0NyJZHL5dKpp56qjz76SEcddZQ+++yzqI7v8XhksVh6fWb58uVasmSJJGnp0qV6+eWXg+6XlZVp5syZcrvdmj17tlavXi2bzea/73A4tHDhQm3YsEFWq1Vbt27V5MmTQz7n9ttv169+9StJ0j333KObbrop6P6aNWt08skny+1269RTT9V7770XMobb7dbMmTNVVlam7OxsffrppyGfdfXVV+vhhx+WJD399NO6+OKLe/3+B2K4ryS65eVN+sv6vVqXdrWKTfVdN864RzrhyoTNCwAAAACAQMN6JdHevXv7PHbv3q2NGzfq8ccf1+zZs7VmzRqZTCZdeOGFUZ9PXwGRJJ177rmaMWOGJGn16tUh93/729/6e/w89NBDQQGRJNntdj30kK9kye126/777w8Zw+Vy6YEHHpAkzZw5Uz/72c9Cnpk/f74uu+wySdKKFSv0ySefhDzz6quvqqysTJL0i1/8ImwYde+99yovL89/jlBb9jdqpmlvcEAkSZO/mZD5AAAAAAAQT9Z4fMikSZP6/R7DMDR//nz99Kc/jcGMIpORkSFJamtrC7puGIZee+01SdKMGTM0b968sO+fN2+epk+frm3btmn58uV68MEHg3oTrVy5UvX19ZKkSy65RGZz+Mzu0ksv9e/y9sorr+j4448Pur98+fKgZ8Ox2+264IIL9Nhjj2nz5s3avn27pk6dGv4bT0Ier6FtB5t0iblbSV/uBKkgNHQDAAAAAGCkictKIsMw+nXk5eXplltu0TvvvKO0tLR4TDHEli1b/GVunSuKOu3atUuVlZWSpIULF/Y6Tuf9iooK7d69O+je+++/H/JcOLNnz/YHVh988EHI/c5xpk+frlGjRvU5l57GSWa7qlvU5vKG9iOa8i2pl6bjAAAAAACMFHFZSfTHP/6xz2fMZrOysrI0adIkHXHEERGVhEWbw+FQZWWl/vrXv+qee+6Rx+PbAv36668Pem7Lli3+8+4BUneB97ds2RK0qirScaxWqyZPnqxNmzYFvUfyNb6uqKgY0Fz6q/NzerJ///5+jzlUbNnfqAy1ara52w5zU76VmAkBAAAAABBncQmJLrnkknh8zIA89dRT+ud//uce799444266KKLgq6Vl5f7z/tqDtXZSKr7+wJfZ2RkKDc3t89xNm3apKqqKrW3t/tXWFVUVKiz9/hg5hKJwPePNFv2N2q++SulmjxdF80p0qRvJG5SAAAAAADEUVxCouHomGOO0aOPPqoTTjgh5F5TU5P/PDMzs9dxOsvEJN+qn3Dj9DVGuHE6Q6JozSXZbT3QpFO69yMaP09Ky0rMhAAAAAAAiLO4hET/8i//IpPJpF//+tcaPXp0RO+pqqrSz3/+c5lMJj3xxBMxm9u5556r2bNnS5JaW1u1Y8cOvfDCC3r11Vd10UUX6f7779eZZ54Z9J7ARtapqam9jh/YU6m1tTXsOH2N0ds40ZpLJPpafbR//37NnTu33+MOBVv2Neh282fBF6ewqxkAAAAAIHnEJSR66qmnZDKZ9LOf/SzikKixsdH/vliGRLm5uUGlXnPmzNGFF16oP/3pT7rkkkt0zjnn6IknngjaNSw9Pd1/7nQ6ex2/vb3df26z2YLudY7T1xi9jROtuUSir3K24are4VRa026NT6sKvkE/IgAAAABAEonL7mbD0Y9+9COdf/758nq9uuaaa1RXV+e/l5XVVYLUV9lWS0uL/7x7OVjnOJGUfvU0TrTmksy+2t+ohd1KzYzMEqnkiATNCAAAAACA+BuyIVFnGVVgiVS8nXPOOZJ84crf/vY3//XAFTV97fgVWKLVvfFz5zgtLS2qr6+PaJyioqKgX5NozSWZbdnfpIXmz4OumaZ8SzKZEjQjAAAAAADib8iGRB9++KEkqaSkJGFzKCoq8p/v2bPHfz5r1iz/+datW3sdI/D+zJkzg+5FOo7b7daOHTvCjpGZmekPfAYzl2S2vbJK88xbgi/SjwgAAAAAkGRi0pPoP//zP8Nef/jhh1VcXNzre9vb27Vjxw793//9n0wmkxYsWBCLKUaksrLSfx5YnjVp0iSNGTNG+/bt06pVq3odY/Xq1ZKksWPHauLEiUH3TjrpJP/5qlWrNG/evLBjbNiwwV8qFu7X46STTtJzzz2nbdu26cCBAxo1alTYcQLnmshf16HGUvGx7Kaufk2GTDIddmoCZwQAAAAAQPzFJCS6/fbbZepWqmMYhh555JGIxzAMQ+np6brpppuiPb2Ivfjii/7zI4880n9uMpl0zjnn6JFHHtHWrVu1du3asAHP2rVr/at3zjnnnJBfk1NOOUU5OTlqaGjQ008/rZtvvjnkGcnX+LvTkiVLQu6fe+65eu655/zP3nLLLSHPOBwOvfDCC5J8K5imTZvW27eeVAoavgpaU9dccJSy7PmJmxAAAAAAAAkQs3IzwzD8h8lkkslkCrrW05GWlqaJEyfqoosu0po1a3T00UdHfW5PPfVU0Nbx4fz2t7/Vm2++KUmaOHFi0KofSbrhhhtktfoytmuvvTZkS/nW1lZde+21kiSr1aobbrgh5DNSU1N13XXXSZK2bNmi++67L+SZNWvW+Hd3W7hwoebMmRPyzJIlSzR58mRJ0p133ukvTQt00003+ZtvJzJ4G2q8XkOZ3obgawVTEzQbAAAAAAASJyYribxeb9Brs9ksk8mkzZs3B/XhSZTbb79dP/vZz3TeeefppJNO0uTJk5WZmammpiZ98cUX+vOf/+zviZSamqrHH3/cHwh1mjZtmm688Ubddddd2rBhgxYsWKCf//znmjx5snbs2KG7775bGzdulOQLZaZODR883HTTTXr++ef19ddf6+abb1ZZWZkuvPBC2Ww2rVixQnfccYfcbrdsNpvuv//+sGOkpKTowQcf1FlnnaXGxkYtWLBAt956q+bOnau6ujo9/vjjevnllyX5StN+9KMfRelXcvhrcbqVb2oKumbOYBURAAAAACD5mAzDMGL9IRMnTpTJZNI//vEPTZkyJdYfF9F8AhtR96S0tFRPPvmkTj/99LD3vV6vLr/8cj355JM9jnHZZZdp2bJlMpt7XrRVVlamRYsWafv27WHvZ2dn689//rPOPPPMXuf7+OOP65prrpHT6Qx7f+7cuXrjjTdUWFjY6zgDVVFR4W+iXV5eHrTz2lB1oKFNm+/7rr5l2ei/1vqNX8j2zdCSPQAAAAAAhoJY/fwdk5VE3e3evTseHxOxd999V++8845WrFihLVu26ODBg6qpqVF6erpKSkp0zDHH6Mwzz9QFF1wgu93e4zhms1lPPPGEzjvvPC1btkzr169XdXW1CgsLNWfOHF155ZU644wz+pzPlClTtHHjRv3+97/Xiy++qLKyMjmdTo0bN06LFi3S9ddfrwkTJvQ5zuWXX6758+frwQcf1Lvvvqt9+/YpIyNDM2fO1EUXXaQf//jHISuikl1ze+hKotSsoh6eBgAAAABg5IrLSiIkh+G4kujz8nplPX6CDjMf6Lp4/tPS4ecmbE4AAAAAAPQmVj9/x6xxNTAchFtJJHtBYiYDAAAAAEACRbX26LTTTpPk2yL+3XffDbk+EN3HAqKppbVN2XIEX7TTuBoAAAAAkHyiGhKtXLlSki/Y6X7dZDKpP5Vtnc93HwuIJmdzrcymbv9espIIAAAAAJCEohoSnXzyyWFDnZ6uA4nmaa4JvWhjJREAAAAAIPnEZCVRpNeBRPO2BIdErSa7bNbUBM0GAAAAAIDEoXE1kltrbdDLFkt2giYCAAAAAEBiERIhqZm7hURt1pwEzQQAAAAAgMSKS0hkNptltVr11VdfRfyeHTt2+N8HxIq1vS7odVtqbmImAgAAAABAgsVtJVF/djaLxvuASKQ6g0MiFyERAAAAACBJDdlys85wiF3REEuprsag1+603MRMBAAAAACABBuyIVFNjW/XqYyMjATPBCOZ2esKem1Y0hM0EwAAAAAAEiuuIVGkq4JaWlr00EMPSZImT54cyykhyZkNd9Brw2xJ0EwAAAAAAEismHSFPuyww8Je//a3v62UlJRe39ve3q5Dhw7J6/XKZDLprLPOisUUAUmS2fAEX7D0/u8nAAAAAAAjVUxCot27d4dcMwxDlZWV/Rpn3rx5uvnmm6M0KyBU6EoiQiIAAAAAQHKKSUh0ySWXBL1++umnZTKZdPbZZys3N7fH95lMJqWnp2v06NE68cQTddppp9G4GjEVspKIcjMAAAAAQJKKSUj0xz/+Mej1008/LUn6zW9+o1mzZsXiI4EBsXRbSSRWEgEAAAAAklRMQqLu/uM//kOSVFxcHI+PAyJmVveVRHH5LQEAAAAAwJAT15AIGGosIY2rCYkAAAAAAMnJnOgJAIkU2pOIkAgAAAAAkJyi+hPx3r17ozmc3/jx42MyLkBPIgAAAAAAfKIaEk2aNCmaw0ny7Xjmdrv7fhAYAEu3nkQmVhIBAAAAAJJUVH8iNgwjmsMBMReyksjCSiIAAAAAQHKKakj0xz/+MZrDATHXfXczVhIBAAAAAJJVVH8ivuSSS6I5HBBz1m6Nq02sJAIAAAAAJKkhvbvZ+vXrde211yZ6GhjBuq8kkoWVRAAAAACA5DTkQqKKigrdeeedmjVrlubNm6eHH3440VPCCGZWcB8tk2nI/ZYAAAAAACAuhsSyiZaWFr300kt65plntGrVKn8DbMMwZDKZEjw7jGSmbiGR+NcNAAAAAJCkEhYSGYahd955R88884yWL18uh8Phvy5JpaWlWrp0qc4777xETRFJiZQIAAAAAJCc4h4Sffnll3r66af17LPPav/+/ZK6gqHx48fr/PPP1z/90z/phBNOiPfUkJS6rSQiJAIAAAAAJKm4hERVVVX685//rGeeeUaff/65pK5gKDc3V/X19TKZTLrnnnt0wQUXxGNKgKTQSIjyRgAAAABAsopZSNTe3q7XXntNzzzzjP7+97/L4/H4g6G0tDQtWrRIP/zhD7Vo0SLZbLZYTQPoVWhPIkIiAAAAAEByinpI9MEHH+iZZ57Riy++qMbGRkldDai/8Y1v6Ic//KEuuOAC5eTkRPujgX4LCYkoNwMAAAAAJKmoh0Qnn3yyTCaTf9XQrFmzdNFFF+miiy7S+PHjo/1xQHSREQEAAAAAklTMys2ysrL0wAMP6NJLL43VRwCD1n0lkUFKBAAAAABIUuZYDGoYhpqbm3XZZZfpqKOO0j333KOKiopYfBQQVSZTTH5LAAAAAAAw5EX9J+L3339fP/7xj5WTkyPDMLR582b94he/0MSJE3XqqafqySef9PcqAhKt+0oi+lYDAAAAAJJV1EOiBQsWaNmyZTpw4ICef/55LVq0SBaLRV6vV6tXr9bll1+uUaNG6fzzz9f//d//ye12R3sKQD/QuBoAAAAAAClG5WaSlJqaqvPPP1+vv/66Kisr9d///d866qijZBiG2tra9Morr2jJkiUqKSmJ1RSAPoVGQoREAAAAAIDkFJcGLEVFRfrpT3+qjRs3atOmTfq3f/s3jRo1SoZhqK6uTqaOGp9/+7d/0/XXX6/3338/HtMCQsrNqDcDAAAAACSruHfpPeKII3TfffepvLxcb775pi688EKlp6fLMAzt27dPv/vd73TKKado9OjR+slPfqJ333033lNEEiEkAgAAAADAJ2FbOZnNZn33u9/Vs88+qwMHDmjZsmX6xje+Icm3O9rBgwf12GOP6Tvf+U6ipogkZCIkAgAAAAAkqSGx33dWVpZ+/OMfa9WqVdqxY4duv/12TZkyRYZhyDC6NxYGAAAAAABAtA2JkCjQxIkT9f/+3//T119/rffff1+XX355oqcEAAAAAAAw4lkTPYHeLFiwQAsWLEj0NAAAAAAAAEa8IbeSCAAAAAAAAPFHSAQAAAAAAABCIgAAAAAAABASIcmx4T0AAAAAAD6EREAAE7ERAAAAACBJERIBAAAAAACAkAgAAAAAAACERAAAAAAAABAhEQAAAAAAAERIBAAAAAAAABESIekZiZ4AAAAAAABDAiERAAAAAAAACIkAAAAAAABASAQAAAAAAAAREgEAAAAAAECERAAAAAAAABAhEQAAAAAAAERIBAAAAAAAABESAQAAAAAAQIREAAAAAAAAECERAAAAAAAAREgEAAAAAAAAERIBAAAAAABAhEQAAAAAAAAQIREAAAAAAABESAQAAAAAAAAREgEAAAAAAECERAAAAAAAABAhEQAAAAAAAERIBAAAAAAAABESAQAAAAAAQIREAAAAAAAAECERAAAAAAAAREgEAAAAAAAAERIBAAAAAABAhEQAAAAAAAAQIREAAAAAAABESAQAAAAAAAAREgEAAAAAAECERAAAAAAAABAhEQAAAAAAAERIBAAAAAAAABESAQAAAAAAQIREAAAAAAAAECERAAAAAAAAREgEAAAAAAAAERIBAAAAAABAhEQAAAAAAAAQIREAAAAAAABESAQAAAAAAAAREgEAAAAAAECERAAAAAAAABAhEQAAAAAAAERIBAAAAAAAABESAQAAAAAAQIREAAAAAAAAECERAAAAAAAAREgEAAAAAAAAERIBAAAAAABASRwSffrpp7rjjjt0xhlnaNy4cUpLS1NmZqamTZumSy+9VO+//36/xnvrrbe0dOlSlZaWKi0tTaWlpVq6dKneeuutiMdwOBy69957NXfuXOXn5yszM1MzZ87UjTfeqL1790Y8zpdffqmrrrpKU6ZMkc1mU1FRkU4++WQ99thjcrvd/fq+AAAAAABAcjAZhmEkehLxtnDhQq1evbrP5370ox/pD3/4g1JTU3t8xjAMXXXVVVq2bFmPz1xxxRV69NFHZTKZenxmx44dWrx4sbZt2xb2fk5Ojp599lktWrSo1zk/8cQTuvrqq9Xe3h72/rx58/T666+roKCg13EGoqKiQuPGjZMklZeXq7S0NOqfEW2Nt49Wthz+11vPeFEzTvh2AmcEAAAAAEDvYvXzd1KuJKqsrJQkjRkzRtdff71eeuklrVu3TmvWrNH//M//aOzYsZKkP/3pT7r00kt7HevWW2/1B0THHnusnnvuOa1bt07PPfecjj32WEnSsmXLdNttt/U4RnNzs84880x/QHT55Zfr3Xff1UcffaTf/OY3yszMVENDg84//3xt2rSpx3HefvttXXHFFWpvb1dJSYkefPBBffzxx/rb3/6mpUuXSpLWrl2rpUuXyuv1RvaLBQAAAAAAkkJSriQ688wzdfHFF+u8886TxWIJuV9dXa0FCxbo66+/liStXr1a3/jGN0KeKysr08yZM+V2uzV79mytXr1aNpvNf9/hcGjhwoXasGGDrFartm7dqsmTJ4eMc/vtt+tXv/qVJOmee+7RTTfdFHR/zZo1Ovnkk+V2u3XqqafqvffeCxnD7XZr5syZKisrU3Z2tj799NOQz7r66qv18MMPS5KefvppXXzxxX39UvULK4kAAAAAAIg9VhJF0euvv64LLrggbEAkSYWFhfrv//5v/+uXXnop7HO//e1v/T1+HnrooaCASJLsdrseeughSb4Q5/777w8Zw+Vy6YEHHpAkzZw5Uz/72c9Cnpk/f74uu+wySdKKFSv0ySefhDzz6quvqqysTJL0i1/8ImwYde+99yovL89/DgAAAAAA0CkpQ6JInHLKKf7zHTt2hNw3DEOvvfaaJGnGjBmaN29e2HHmzZun6dOnS5KWL1+u7gu3Vq5cqfr6eknSJZdcIrM5/D+SwLK3V155JeT+8uXLwz4byG6364ILLpAkbd68Wdu3bw/7HAAAAAAASD6ERD1wOp3+83DBza5du/y9jRYuXNjrWJ33KyoqtHv37qB7gbuo9TbO7NmzlZGRIUn64IMPQu53jjN9+nSNGjWqz7n0NA4AAAAAAEhOhEQ9WLVqlf98xowZIfe3bNnS6/1AgfcD39efcaxWq7+ErPsYzc3NqqioGPRcAAAAAABA8rImegJDkdfr1V133eV/3VmiFai8vNx/3leDqM5mUt3fF/g6IyNDubm5fY6zadMmVVVVqb29XWlpaZJ8K5Q6y9gGM5e+dAZRPdm/f3+/xgMAAAAAAEMHIVEYv/3tb7Vu3TpJ0pIlSzR79uyQZ5qamvznmZmZvY7XWSYm+Vb9hBunrzHCjdMZEkVrLn0JDJgAAAAAAMDIQrlZN6tWrdItt9wiSSouLtYjjzwS9rm2tjb/eWpqaq9jdoY5ktTa2hp2nL7G6G2caM0FAAAAAAAkL1YSBfjyyy+1ZMkSud1upaWl6YUXXlBJSUnYZ9PT0/3ngU2uw2lvb/ef22y2sOP0NUZv40RrLn3pqzxt//79mjt3br/GBAAAAAAAQwMhUYddu3bp29/+turq6mSxWPTcc8/1uttYVlaW/7yvsq2Wlhb/efdysM5xIin96mmcaM2lL331OwIAAAAAAMMX5WaS9u3bp29961vat2+fTCaTnnzySS1ZsqTX9wQGJn01dA5cgdO9r0/nOC0tLaqvr49onKKioqCysWjNBQAAAAAAJK+kD4mqq6t1+umna+fOnZKkhx56SBdffHGf75s1a5b/fOvWrb0+G3h/5syZAxrH7XZrx44dYcfIzMz0Bz6DmQsAAAAAAEheSR0SNTQ06Dvf+Y6++uorSdJdd92lq6++OqL3Tpo0SWPGjJHka3bdm9WrV0uSxo4dq4kTJwbdO+mkk/znvY2zYcMGf6nYggULQu53jrNt2zYdOHCgx3ECPyPcOAAAAAAAIDklbUjkcDi0ePFiffrpp5KkX/7yl/r5z38e8ftNJpPOOeccSb7VOWvXrg373Nq1a/2rd8455xyZTKag+6eccopycnIkSU8//bQMwwg7zlNPPeU/D1cKd+6554Z9NpDD4dALL7wgybeCadq0aWGfAwAAAAAAyScpQyKn06klS5boww8/lCRdf/31+vWvf93vcW644QZZrb7e39dee23IlvKtra269tprJUlWq1U33HBDyBipqam67rrrJElbtmzRfffdF/LMmjVr9MQTT0iSFi5cqDlz5oQ8s2TJEk2ePFmSdOedd/pL0wLddNNNqqur858DAAAAAAB0Ssrdzb7//e/r73//uyTptNNO02WXXabNmzf3+HxqamrYVTfTpk3TjTfeqLvuuksbNmzQggUL9POf/1yTJ0/Wjh07dPfdd2vjxo2SfKHM1KlTw45/00036fnnn9fXX3+tm2++WWVlZbrwwgtls9n+f3t3H1xVfecP/JMQQgIIQUAeCoqCPPhra7WS6kBVdldtqRRLd2vrrlXXRZ2t3albtbNbK7ozYrXO1LXd1ie0XVft2vrUFnXrKioqGKW62FYUXFFwQcGCPBNCvr8/ILe5yU1yA4ELnNdrJjP3nnPu93xuPnPyTd4559yYM2dOzJw5MxoaGqK6ujpuvPHGgmN07949brrpppgyZUqsW7cuJkyYEFdccUXU1tbGmjVr4rbbbov7778/InZcmnb22Wd35lsGAAAAHODKUlvXNx3AWl7y1ZHDDjssli5dWnBdY2NjTJ8+Pe644442X3/++efHrbfeGuXlbZ+4tWTJkpg8eXIsXry44Po+ffrE3XffHaeffnq7td52221x8cUXR319fcH1tbW1MXv27BgwYEC74+yK5cuX526gvWzZsrxPXdtXrbtqSPSJTbnniz778xj7qVNLWBEAAAC0b0/9/Z3Jy826Unl5ecyaNStmz54dU6dOjaFDh0ZlZWUMHTo0pk6dGo888kjcfvvt7QZEERGjRo2Kl19+Oa677ro47rjjoqamJnr27BljxoyJSy65JBYuXNhhQBQRMX369FiwYEFMnz49jjjiiKiqqor+/fvHxIkT48c//nE899xzeyQgAgAAAPZvmTyTiD3DmUQAAACw5zmTCAAAAIA9RkgEAAAAgJAIAAAAACERAAAAACEkAgAAACCERAAAAACEkAgAAACAEBIBAAAAEEIiAAAAAEJIBAAAAEAIiQAAAAAIIREAAAAAISQCAAAAIIREAAAAAISQCAAAAIAQEgEAAAAQQiIAAAAAQkgEAAAAQAiJAAAAAAghEQAAAAAhJAIAAAAghEQAAAAAhJAIAAAAgBASAQAAABBCIgAAAABCSAQAAABACIkAAAAACCERAAAAACEkAgAAACCERAAAAACEkAgAAACAEBIBAAAAEEIiAAAAAEJIBAAAAEAIiQAAAAAIIREAAAAAISQCAAAAIIREAAAAAISQCAAAAIAQEgEAAAAQQiIAAAAAQkgEAAAAQAiJAAAAAAghEQAAAAAhJAIAAAAghEQAAAAAhJAIAAAAgBASAQAAABBCIgAAAABCSAQAAABACIkAAAAACCERAAAAACEkAgAAACCERAAAAACEkAgAAACAEBIBAAAAEEIiAAAAAEJIBAAAAEAIiQAAAAAIIREAAAAAISQCAAAAIIREAAAAAISQCAAAAIAQEgEAAAAQQiIAAAAAQkgEAAAAQAiJAAAAAAghEQAAAAAhJAIAAAAghEQAAAAAhJAIAAAAgBASAQAAABBCIgAAAABCSAQAAABACIkAAAAACCERAAAAACEkAgAAACCERAAAAACEkAgAAACAEBIBAAAAEEIiAAAAAEJIBAAAAEAIiQAAAAAIIREAAAAAISQCAAAAIIREAAAAAISQCAAAAIAQEgEAAAAQQiIAAAAAQkgEAAAAQAiJAAAAAAghEQAAAAAhJAIAAAAghEQAAAAAhJAIAAAAgBASAQAAABBCIgAAAABCSAQAAABACIkAAAAACCERAAAAACEkAgAAACCERAAAAACEkAgAAACAEBIBAAAAEBkOid5///349a9/HVdeeWV89rOfjQEDBkRZWVmUlZXFueee2+nxHnvssZg2bVoMGzYsevToEcOGDYtp06bFY489VvQYmzZtiu9973tRW1sbBx98cPTu3TvGjRsXl156abzzzjtFj/P73/8+Lrroohg1alRUV1fHwIED48QTT4xbbrklGhoaOv3eAAAAgANfRakLKJVBgwZ1yTgppbjooovi1ltvzVv+7rvvxoMPPhgPPvhgXHDBBXHzzTdHWVlZm+O8+eab8bnPfS5ef/31vOWLFi2KRYsWxe233x733HNPTJ48ud16Zs2aFV/72tdi69atuWVbtmyJuXPnxty5c+MnP/lJ/PrXv47+/fvvwrsFAAAADlSZPZOoueHDh8epp566S6+94oorcgHRMcccE/fee2/U1dXFvffeG8ccc0xERNx6663xne98p80xNmzYEKeffnouIJo+fXo88cQT8fzzz8c111wTvXv3jg8//DD+6q/+KhYuXNjmOP/1X/8VF1xwQWzdujUGDRoUN910U7zwwgvx6KOPxrRp0yIiYv78+TFt2rRobGzcpfcLAAAAHJgyeybRlVdeGePHj4/x48fHoEGDYunSpXH44Yd3aowlS5bE9ddfHxERxx13XDzzzDNRXV0dERHjx4+Pz3/+83HSSSfFSy+9FNddd12cd955MXLkyFbj3HDDDbFo0aKIiLj++uvjsssuy6074YQTYtKkSXHiiSfGpk2b4hvf+EY8+eSTrcZoaGiIiy++OBobG6NPnz7x3HPP5e3rM5/5THzta1+LH/3oR/HMM8/Ef/zHf8RXv/rVTr1fAAAA4MCV2TOJrr766jj99NN367Kz73//+7l7/PzgBz/IBURNevbsGT/4wQ8iYkeIc+ONN7YaY9u2bfGv//qvERExbty4+OY3v9lqmxNOOCHOP//8iIiYM2dOLFiwoNU2Dz74YCxZsiQiIv7pn/6pYBj1ve99L/r165d7DAAAANAksyHR7kopxcMPPxwREWPHjo3jjz++4HbHH398jBkzJiIiHnrooUgp5a1/6qmnYu3atRERcc4550R5eeGWNL+Z9gMPPNBq/UMPPVRw2+Z69uwZX/rSlyIi4ne/+10sXry44HYAAABA9giJdtFbb70V7777bkREnHTSSe1u27R++fLlsXTp0rx1c+fObbVdIccdd1z06tUrIiKeffbZVuubxhkzZkwMHjy4w1raGgcAAADIpszek2h3vfbaa7nHY8eObXfb5utfe+21vHsfFTtORUVFjBw5MhYuXJj3mogdN75evnz5LtXSGU37aMuKFSs6NR4AAACw7xAS7aJly5blHg8bNqzdbYcPH17wdc2f9+rVK2pqajocZ+HChbFq1arYunVr9OjRIyJ2hDdNl7HtTi0daf5aAAAA4MDicrNdtH79+tzj3r17t7tt02ViETvO+ik0TkdjtDdOV9UCAAAAZJcziXbRli1bco8rKyvb3bbpjJ+IiM2bNxccp6Mx2hunq2rpSEdnHq1YsSJqa2s7NSYAAACwbxAS7aKqqqrc4/r6+na33bp1a+5xdXV1wXE6GqO9cbqqlo50dCkbAAAAsP9yudkuOuigg3KPO7psa+PGjbnHLS8HaxqnmEu/2hqnq2oBAAAAsktItIuan1XT0ad+Nb9Mq+XNn5vG2bhxY6xdu7aocQYOHJh32VhX1QIAAABkl5BoFx111FG5x4sWLWp32+brx40bt0vjNDQ0xJtvvllwjN69e+cCn92pBQAAAMguIdEuOvzww2Po0KEREfH000+3u+0zzzwTEREf+chHYsSIEXnrJk6cmHvc3jgvvfRS7lKxCRMmtFrfNM7rr78eK1eubHOc5vsoNA4AAACQTUKiXVRWVhZTp06NiB1n58yfP7/gdvPnz8+dvTN16tQoKyvLW3/yySdH3759IyLipz/9aaSUCo7zk5/8JPf4C1/4Qqv1Z5xxRsFtm9u0aVPcd999EbHjDKbRo0cX3A4AAADIHiHRbvjGN74RFRU7PiDu61//equPlN+8eXN8/etfj4iIioqK+MY3vtFqjMrKyviHf/iHiIh47bXX4oYbbmi1zbx582LWrFkREXHSSSfF+PHjW23zhS98IUaOHBkREddee23u0rTmLrvsslizZk3uMQAAAECTilIXUCrPPvtsLFmyJPd89erVucdLlixpdTbOueee22qM0aNHx6WXXhrf/e5346WXXooJEybEt771rRg5cmS8+eabcd1118XLL78cETtCmSOPPLJgLZdddln853/+Z7zxxhtx+eWXx5IlS+LLX/5yVFdXx5w5c2LmzJnR0NAQ1dXVceONNxYco3v37nHTTTfFlClTYt26dTFhwoS44oorora2NtasWRO33XZb3H///RGx49K0s88+uxPfLQAAAOBAV5baur7pAHfuuefGT3/606K3b+vb1NjYGNOnT4877rijzdeef/75ceutt0Z5edsnbi1ZsiQmT54cixcvLri+T58+cffdd8fpp5/ebp233XZbXHzxxVFfX19wfW1tbcyePTsGDBjQ7ji7Yvny5bkbaC9btizvU9f2VeuuGhJ9YlPu+aLP/jzGfurUElYEAAAA7dtTf3+73Gw3lZeXx6xZs2L27NkxderUGDp0aFRWVsbQoUNj6tSp8cgjj8Ttt9/ebkAUETFq1Kh4+eWX47rrrovjjjsuampqomfPnjFmzJi45JJLYuHChR0GRBER06dPjwULFsT06dPjiCOOiKqqqujfv39MnDgxfvzjH8dzzz23RwIiAAAAYP+W2TOJ6HrOJAIAAIA9z5lEsEfkf9pcCpkpAAAA2SQkItMaW4ZETqwDAAAgo4REZFpqGRI1NpaoEgAAACgtIRGZ1jIkiiQkAgAAIJuERGRaY8tDIG0vTSEAAABQYkIiMq3V5WZuSQQAAEBGCYnItJY3rna5GQAAAFklJCLjWt642uVmAAAAZJOQiExrdSYRAAAAZJSQiExLLQ4BZxIBAACQVUIiMi2VuScRAAAARAiJyLjWn24mJAIAACCbhERkWsuQKFIqTSEAAABQYkIiMq2x1T2JnEkEAABANgmJyLiWl5u5cTUAAADZJCQi0+rLeuQ9T1s2lKgSAAAAKC0hEZm2oXu/vOeNG1aVqBIAAAAoLSERmbal+8F5z8s2CYkAAADIJiERmbatKj8kqti8ukSVAAAAQGkJici07T0H5j3vsfWDElUCAAAApSUkItt65YdE1dvWlKgQAAAAKC0hEZnW7aBD8p4f1CAkAgAAIJuERGRaZd/Bec/7pA8jGhtLVA0AAACUjpCITKuuGZT3vCIaIzY7mwgAAIDsERKRab0OHtxqWf26FSWoBAAAAEpLSESmHdynd6xNvfKWbfhgZYmqAQAAgNIREpFpfau7xwepT96yzWuFRAAAAGSPkIhM61ZeFmvKa/KW1a99rzTFAAAAQAkJici8Dd365T3fvuH9ElUCAAAApSMkIvM2dc8PiWKDM4kAAADIHiERmbelOv8TzqrWLilRJQAAAFA6QiIyLw3+eN7zQza8HrF9W4mqAQAAgNIQEpF5fUd9Ku95ZdRHeu/3JaoGAAAASkNIROYdOeLQWNo4KG/Z+v+tK1E1AAAAUBpCIjJveL+e8fuyUXnLNgiJAAAAyBghEZlXXl4Wqw76f3nLKt97uUTVAAAAQGkIiSAiGoYck/f84I3/G1G/sUTVAAAAwN4nJIKI6HPEJ6Mh/elwKI/GiBX/U8KKAAAAYO8SEkFEjBk2KN5Iw/OW1b/zYomqAQAAgL1PSAQRMWbwQfE/6Yi8ZW5eDQAAQJYIiSAiqrp3ixW9jspb1n2lm1cDAACQHUIi2Kl+UP7Nqw/a/G7ExtUlqgYAAAD2LiER7NRvxMdjc6rMX/h/ziYCAAAgG4REsNPYjxwcv0sj8pY1Ln+pNMUAAADAXiYkgp2OGtInFjaOzFu2ealPOAMAACAbhESw08CDesSy8o/kLUvuSQQAAEBGCIlgp8bGFFWNG/MXVvUtTTEAAACwlwmJYKeN9Q3RNzbkLSvv2b9E1QAAAMDeJSSCndZvaYiaFiFRt14Hl6gaAAAA2LuERLDThq0NUVOWHxJ1P8iZRAAAAGSDkAh2Wr9lW9RE/j2Jyns6kwgAAIBsEBLBTuu3NERN2fr8hdX9SlMMAAAA7GVCIthpR0jU4tPNqp1JBAAAQDYIiWCnDVsbol84kwgAAIBsEhLBTps2ro+qsm35C92TCAAAgIwQEsFO2zf8sfVCZxIBAACQEUIi2Gn7xvyQqDHKIqr6lqgaAAAA2LuERLBT2rwm7/nWbr0jyruVqBoAAADYu4REsFP5lvwzibZ2dxYRAAAA2SEkgp26bV2b97y+sqYkdQAAAEApCIlgp56b3s17vr2qf4kqAQAAgL1PSAQRsWXb9vjIliV5y8oHjStRNQAAALD3CYkgIv531cY4qmxp3rK+R3yyNMUAAABACQiJICLefvt/45CytXnLqoYfU5piAAAAoASERBARG95+Oe/5lrKqiIOPKFE1AAAAsPcJiSAiyt9bmPd8da8jI8q7lagaAAAA2PuERBAR/da9nvd864D/V6JKAAAAoDSERGTepvqGGLHtzbxlVcM/UZpiAAAAoESERGTem8tWxoiy9/KWDRg1vkTVAAAAQGkIici8VW8uiPKylHu+Pcqjx9CPlrAiAAAA2PuERGRe/fL/yXu+svKwiO5VJaoGAAAASkNIROZVffD7vOdr+44tUSUAAABQOkIiMm/wpjfyFwz6eGkKAQAAgBISEpFpH27YFIc3vpO3rM8Rx5aoGgAAACgdIRGZ9u7il6NHWUPeskFH1paoGgAAACgdIRGZtn7Fkrzn75f1j8qDDi5RNQAAAFA6QiIybfvWjXnPN3brU6JKAAAAoLSERGRaY/2mvOfbyqtKVAkAAACUlpCIbNuWHxI1CIkAAADIKCER2dbiTKKGbtUlKgQAAABKS0hEppU1bM57vr2bM4kAAADIJiER2bYtPyRqFBIBAACQUUIiMq285ZlE3XuWqBIAAAAoLSERmdatRUgUFe5JBAAAQDYJici0btu35C9wJhEAAAAZJSQi0yq2559JlLo7kwgAAIBsEhKRaRWN+WcSlVc6kwgAAIBsEhKRaZUtQqIyIREAAAAZJSQi0ypTizOJevQqUSUAAABQWkIiMq2ycWve8wpnEgEAAJBRQiIyrTLq8553q3TjagAAALJJSESmlUXKX1DerTSFAAAAQIkJici0slIXAAAAAPsIIRHkERsBAACQTUIiMi7/crMyGREAAAAZJSSCZpIziQAAAMgoIRE0IyICAAAgq4REZFqrTzcDAACAjBISQXNuSgQAAEBGCYnItJZnEomIAAAAyCohETSTnEkEAABARgmJyLSWkZCMCAAAgKwSEkEeKREAAADZJCQi43y6GQAAAEREVJS6AA4cDQ0NuccrVqwoYSXFW79ue6yLxtzz995fHQctX17CigAAAKB9zf/mbv63+O4SEtFlVq1alXtcW1tbwkp2w/f/ptQVAAAAQNFWrVoVI0aM6JKxXG4GAAAAQJSllNyUhS6xZcuWePXVVyMiYuDAgVFRse+fqLZixYrcWU91dXUxZMiQElfE3qDv2aTv2aTv2aTv2aX32aTv2ZT1vjc0NOSu5vnYxz4WVVVVXTLuvv9XPPuNqqqqGD9+fKnL2GVDhgyJYcOGlboM9jJ9zyZ9zyZ9zyZ9zy69zyZ9z6as9r2rLjFrzuVmAAAAAAiJAAAAABASAQAAABBCIgAAAABCSAQAAABACIkAAAAACCERAAAAABFRllJKpS4CAAAAgNJyJhEAAAAAQiIAAAAAhEQAAAAAhJAIAAAAgBASAQAAABBCIgAAAABCSAQAAABACIkAAAAACCERAAAAACEkAgAAACCEROxh77zzTlx66aUxbty46NWrVxx88MFRW1sbN9xwQ2zatKnL9vOzn/0sTjvttBgyZEhUVVXFiBEj4uyzz4758+cXPcYHH3wQM2bMiKOPPjr69u0bffr0iaOPPjpmzJgRH3zwQdHjzJs3L84+++wYMWJEVFVVxZAhQ+Izn/lM/OxnPyt6jIaGhrjlllvixBNPjIEDB0Z1dXWMGjUqLrroovjDH/5Q9DilkpW+NzQ0xOOPPx6XXXZZfPrTn46BAwdG9+7do6amJo499ti49NJL48033+ywhnPPPTfKysqK+lq6dGnR721vy0rfn3rqqaL7ddVVV3VYi+O9OKXue7E9b/5ViOO9c3an72vXro3HH388rrnmmjjjjDNi6NChue/tySef3OlazO/Z6bv5PV9W+m5+z5eVvpvfC0iwh/z6179Offv2TRFR8GvMmDHpzTff3K19bN68OZ1++ult7qO8vDz9y7/8S4fj1NXVpSFDhrQ5ztChQ9OLL77Y4ThXX311Ki8vb3OcKVOmpM2bN7c7xurVq9OnPvWpNsfo0aNHmjVrVtHfo70tK31///33U//+/dt8bdNXZWVluvHGG9ut45xzzulwnKavt956a1e+ZXtcVvqeUkpz5swpul8zZsxotxbHe8f2lb4X2/Omr9GjRxccx/FenK7o+4gRI9p8/UknndSpeszv2em7+T1fVvqekvm9uSz1vdieN30dyPN7EyERe8Qrr7ySevbsmSIi9e7dO11zzTXp+eefT0888USaPn167gAZO3ZsWr9+/S7v56yzzsqNNWnSpPTQQw+lurq6NGvWrDRy5Mjcuttuu63NMZYvX54GDRqUIiJVVFSkyy+/PD3zzDPpmWeeSZdffnmqqKhIEZEGDRqUli9f3uY4t912W25/I0eOTLNmzUp1dXXpoYceSpMmTcqt++u//us2x2hoaEgnnnhibttp06alRx99NL3wwgvppptuSoccckiKiNStW7f02GOP7fL3bU/JUt+XLVuW288nPvGJNGPGjPTII4+kBQsWpCeffDJddtllqaqqKrfNLbfc0mYtTZPK0KFD06uvvtruV319/S5/3/aULPU9pfxfIu+44452+/Xee++1WYvjvTj7St87OjZfffXVdOmll+bqueaaawqO43gvTlf0/bDDDsttN2jQoLw/RjoTEpnfs9V38/ufZKnvKZnfm2St7+b31oRE7BEnn3xy7pfx559/vtX666+/PnegXX311bu0j6eeeio3xpQpU1JDQ0Pe+lWrVqVDDz00RUTq169fWrNmTcFxmqe+9913X6v19913X279eeedV3CMNWvWpJqamhQR6dBDD02rVq3KW9/Q0JCmTJmSG+fpp58uOM6dd96Z2+bv//7vW61fvHhx6tOnT4qIdOSRR6Zt27YVHKdUstT35cuXp1NOOSXNmzevzVrnz5+fqqurU0Skvn37pnXr1rVby2GHHdb2G9+HZanvKeX/Ejlnzpxdej8pOd6LsS/1vRi1tbUpIlJZWVl6++23263F8d62rur79773vfSLX/wirxed/ePB/L5Dlvpufv+TLPU9JfN7k6z1vRhZmN+bExLR5erq6nIH54UXXlhwm+3bt6dx48blDvxdSVMnT56cS+GXLVtWcJt77703V8sNN9zQav3KlStTt27dUkSk0047rc19nXbaabl9rVy5stX65j8s77333oJjLFu2LLev008/veA2Rx11VO57snHjxoLbXHvttbl9/eIXv2iz5r0ti30vxje/+c1cLQ888EDBbfbnSSWLfe+qXyId7x3bl/rekUWLFuXqmDRpUpvbOd471hV9b0tn/3gwv2ez78Uwvx94fTe/Z7PvHcnC/N6SG1fT5R566KHc4/POO6/gNuXl5fHVr341IiLWrFkTTz31VKf2sWHDhnjiiSciIuKUU06JYcOGFdxu2rRp0adPn4iIeOCBB1qt/+Uvfxnbt29vt9aIHTcii4jYvn17/PKXv2y1vuk99+nTJ6ZNm1ZwjGHDhsVf/MVfRETE448/Hhs2bMhbv3jx4txN7M4888zo2bNnu7W09Z5KJYt9L8akSZNyj4u5yeX+Rt93jeO9Y/tb3//93/899/icc87p9Ov3B/tT37uK+T2bfS+G+T2bfe+I471j+1vfszC/tyQkosvNnTs3IiJ69eoVn/zkJ9vc7qSTTso9fvbZZzu1j7q6uti6dWurcVqqrKyM448/Pveabdu2Fay1o3Haq7W+vj7q6uoiIuKEE06IysrKDsfZunVrvPjii7tUy+DBg2P06NEFaymlrPW9WE31RuyYVA80+r5rHO8d25/6nlKKu+++OyJ2fE+++MUvdur1+4v9qe9dwfy+Q9b6Xizz+w5Z63tHHO8d25/6npX5vaUD7ycaJffaa69FRMSoUaOioqKize3Gjh3b6jWd3UfLcdrbT0NDQyxevLjgOH379o3Bgwe3OcaQIUNySXbLWhcvXhwNDQ2dqqXQOLvynpYtWxYbN25sd9u9JWt9L9bTTz9ddM0ffPBBfPrTn46ampro0aNHDBkyJE477bT44Q9/2KUfNdqVst73f/7nf45hw4ZFZWVl9OvXL4455pi45JJL4o033mj3dY734vfRcpz29lOq4/2pp56Kt99+OyJ2/Oezd+/eHb7G8d7+PlqO095+CvW9K5jfd8ha34tlft/hQO27+T2bfW8pK/N7S0IiutSWLVti9erVERFtnjrYpF+/ftGrV6+I2PHDsTOab9/RfoYPH17wdc2fdzRG83HaGqOraunMOCmlWL58ebvb7g1Z7HsxVqxYEXfeeWdERAwYMCDv1PRCNmzYEM8++2x8+OGHUV9fHytXrozf/OY38fWvfz1Gjx4dzz//fKdr2JP0PWLevHnx7rvvxrZt22Lt2rXxyiuvxI033hjjxo2Lq666KlJKBV/neO/Yvtz3lpqfit50Cn5HHO+FdVXfu4L5PZt9L4b5/U8O1L6b37PZ95ayML8X0nY8CLtg/fr1ucfFJK29evWKjRs3trp+vyv30/QDLCJa7adpnGJrbW+Mrqpld8cphSz2vSMppbjoooty+/rOd74T1dXVBbctKyuL448/PqZMmRLHHntsDBo0KLZs2RKvvvpqzJo1K+rq6uLdd9+NU089NebOnRvHHHNMp2rZU7Lc9yFDhsS0adNi4sSJccQRR0RFRUW888478atf/Sruuuuu2LZtW1x99dVRX18fM2fO3GPvqRSy3PdCNm3aFPfff39E7Phl98/+7M/a3d7x3nX72dPHhvk9m33viPm9tQOp7+b3HbLW90KyMr8XIiSiS23ZsiX3uL1r95v06NEjIiI2b968x/bTtI9C+2kaZ3dq7epadnecUshi3zsyc+bM3M1vJ02aFBdffHGb237/+9+PmpqaVstPOOGEmD59elxxxRUxc+bM2LhxY/zd3/1dvPTSS1FWVtapevaErPZ9/Pjx8fbbb0f37t3zlh977LFxxhlnxIUXXhinnnpqfPjhh/Hd7343vvSlL8UnPvGJPfKeSiGrfW/LQw89lPuF92/+5m86vDeJ473r9rOnjw3zezb73hHze2sHSt/N79nse1uyMr8X4nIzulRVVVXucX19fYfbN920rK3/wHTFfprfWLDlfprG2Z1au7qW3R2nFLLY9/bcfffd8Z3vfCciIkaMGBH33HNPuxNLoQmlSVlZWVxzzTW5T8757W9/u8+cpprVvvfq1avVL5DN1dbWxr/9279FxI7/ODc9LlRLMfU43veNvrels6eiO967bj97+tgwv2ez7+0xvxd2oPTd/J7NvrclK/N7IUIiutRBBx2Ue1zMKYFNN2kr5pTGXd1P8xvBtdxP0zi7U2tX17K745RCFvveltmzZ8d5550XKaUYNGhQPP744+3eLLdYF154Ye5x85tllpK+t+3MM8+Mvn37RkThfjneu3Y/per7ihUr4r//+78jYsd/oMeNG1fU6zrieC9uP3v62DC/Z7PvbTG/t+1A7ntL5vc/OZD7nqX5vRAhEV2qqqoqBgwYEBHR4Q3Y1qxZkzvwm9+UrBjNb3LW0X6a3+Ss5X6axinmZnFN47Q1RlfV0plxysrKiroZ656Wxb4X8tRTT8Vf/uVfxrZt26Jfv37xm9/8JkaNGtXh64px1FFH5R6/++67XTLm7tL3tlVUVOQ+2rZQvxzvHdsf+n733XfH9u3bI6L4G1oWw/EeRe2nvb53BfN7NvteiPm9bQdy3wsxv+9woPc9S/N7IUIiulxT0rpkyZLcR8cWsmjRolavKVbzA6z5OO3tp6KiotWE3jTOhx9+GCtXrmxzjBUrVsS6desK1jp69Ojo1q1bp2opNM6uvKfhw4fn3dCtlLLW95bq6upiypQpsWXLlujdu3c8+uij8fGPf7zd13RGW5+iUWpZ73t72uuZ471j+0Pf77rrroiI6N69e3zlK18p6jXFcLy3Hqe9/RTqe1cwv++Qtb63ZH7PZt/bY34/8Puetfm9JSERXW7ixIkRseP0wAULFrS5XfNT7CZMmNCpfYwfPz53o7P2TtWrr6+P+fPnt3pNy1o7Gqe9WisrK6O2tjYidnxcZnvX1jaN06NHjzjuuON2qZaVK1fGG2+8UbCWUspa35tbuHBhfOYzn4kNGzZEVVVV/OpXv4pPfepT7b+ZTvrDH/6Qezx06NAuHXt3ZLnv7WloaMgdp4X65Xjv2L7e91deeSUWLlwYERGf+9znon///h2+pliO993ve1cwv++Qtb43Z37PZt/bY37f4UDuexbn91YSdLEXXnghRUSKiHThhRcW3Gb79u1p3LhxKSJSTU1Nqq+v7/R+PvvZz6aISBUVFWnZsmUFt7n33ntztVx//fWt1q9YsSKVl5eniEinnXZam/s67bTTUkSk8vLytGLFilbrr7vuutx+7r333oJjLFu2LHXr1i1FRJo8eXLBbZq+JwcffHDauHFjwW2uvfba3L7uu+++Nmve27LY95RSev3119OgQYNSRKTu3bun2bNnd/o9FePP//zPc+9p7ty5e2QfuyKrfe/IXXfdlavl/PPPL7iN471j+3LfL7nkktx+H3zwwaLfUzEc77vf97Y0veakk04qanvzezb7npL5Pat974j5/cDvexbn95aEROwRn/70p3MH/vPPP99q/fXXX587QGbMmNFq/Z133tnu+pRSeuKJJ3LbfP7zn08NDQ1561etWpUOPfTQ3A+wP/7xjwXHOfvss3Pj/PznP2+1/r777sutP+eccwqO8cEHH6S+ffumiEiHHXZYWr16dd76hoaGNGXKlNw4Tz75ZMFxZs2aldvma1/7Wqv1S5YsSX369EkRkUaOHJm2bdtWcJxSyVrf33777TR8+PAUEalbt24Fx+nIvHnz0v/93/+1ub6xsTF9+9vfztVy9NFHp8bGxk7vZ0/KUt//+Mc/pjlz5hQcu8kLL7yQampqUkSksrKy9OKLLxbczvG+//S9pYaGhjR48OAUEal///5F/4LseN+7fS+ks388mN93yFrfze87ZKnv5vc/yVLfW8ry/N6ckIg94re//W2qrq5OEZF69+6dZs6cmebNm5eefPLJdMEFF+QOkNGjR6d169a1en0xP1xSSunLX/5ybrtJkyalhx9+OL344ovpjjvuSCNHjsytu/nmm9sc45133kkDBw7M/TD81re+lebOnZvmzp2bvvWtb6WKiooUEWngwIFtJt0ppXTzzTfn9jdy5Mh0xx13pBdffDE9/PDDadKkSbl1X/nKV9oco6GhIU2YMCG37Re/+MX02GOPpRdeeCH94Ac/SIccckiK2PGf7kceeaTNcUolS31fvXp1OvLII3P7uvzyy9Orr77a7tfy5ctbjTNjxozUo0ePNHXq1PTDH/4wPfnkk+m3v/1tmjdvXrrllltSbW1tbh89e/ZMdXV1xTVjL8pS3996660UEenjH/94uvLKK9PDDz+c6urq0oIFC9KDDz6Y/vZv/zZ17949V8tll13WZi2O9/2n7y3Nnj07t9+LL764qO9XSo73lPZu319++eV055135n01vW7MmDGt1q1fv77gOOb3bPXd/P4nWeq7+f1PstT3lrI8vzcnJGKP+eUvf5lLyQt9jR49Oi1evLjga4v94bJp06Y0efLkNvdRXl7e7uubzJ8/P5caF/oaPHhwmj9/fofjXHnllamsrKzNcSZPnpw2b97c7hirVq1K48ePb3OMysrKdOutt3ZYS6lkpe9z5sxp83VtfRU6Q2HGjBlFvfbQQw9Nzz77bIfvqVSy0vemXyI7+urWrVu66qqrOvwvkeN9/+h7S2eeeWbudZ35Rc/xvnf7Xuz3u+nrrbfeanMs83t2+m5+z5eVvpvf82Wl7y1lfX5vIiRij1q6dGm65JJL0ujRo1PPnj1TTU1NOu6449J1113X5jW6KRX/w6XJ3XffnU455ZR0yCGHpMrKyjR8+PB01llnFTxFsi2rVq1KV1xxRfroRz+aevfunXr37p0+9rGPpSuuuKLV6eXtee6559JZZ52Vhg8fniorK9MhhxySTjnllHTPPfcUPca2bdvSj370ozRx4sTUv3//VFVVlY444og0ffr09Lvf/a7ocUolC33vql8ily5dmn70ox+ls88+Ox199NFpyJAhqbKyMvXs2TMdeuih6YwzzkizZs3q8I+PfUEW+r5169b085//PP3jP/5jmjhxYjr88MPTQQcdlLp3754GDBiQJkyYkL797W93+EtIc473fb/vzX344Ye5/7COHTu26H2n5HhPae/2vav/eDC/Z6Pv5vfWstB383trWeh7c+b3PylLaT/5HDYAAAAA9pjyUhcAAAAAQOkJiQAAAAAQEgEAAAAgJAIAAAAghEQAAAAAhJAIAAAAgBASAQAAABBCIgAAAABCSAQAAABACIkAAAAACCERAAAAACEkAgAAACCERAAAAACEkAgAAACAEBIBAAAAEEIiAAAAAEJIBAAAAEAIiQAAAAAIIREAAAAAISQCAAAAIIREAAAAAISQCAAAAIAQEgEAAAAQQiIAAAAAIuL/A76AUFKOEgWbAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "a = sd.optical_properties.scattering_coeff.plot()\n", "sd.hygroscopicity.grown_size_distribution.optical_properties.scattering_coeff.plot(ax = a)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Note**, the refractive index of the hygroscopically grown size distribution is changing and approaches that of water." ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "execution": { "iopub.execute_input": "2023-11-28T22:18:21.499662Z", "iopub.status.busy": "2023-11-28T22:18:21.499377Z", "iopub.status.idle": "2023-11-28T22:18:21.507880Z", "shell.execute_reply": "2023-11-28T22:18:21.506959Z", "shell.execute_reply.started": "2023-11-28T22:18:21.499632Z" } }, "outputs": [ { "data": { "text/plain": [ "asphericity : 1\n", "mie_result : None\n", "refractive_index : index_of_refraction\n", "60.0 1.500000\n", "180.0 1.495104\n", "300.0 1.490300\n", "420.0 1.485588\n", "540.0 1.480963\n", "660.0 1.476423\n", "780.0 1.471967\n", "900.0 1.467592\n", "1020.0 1.463295\n", "1140.0 1.459076\n", "1260.0 1.454930\n", "1380.0 1.450858\n", "1500.0 1.446856\n", "1620.0 1.442923\n", "1740.0 1.439057\n", "1860.0 1.435256\n", "1980.0 1.431519\n", "2100.0 1.427845\n", "2220.0 1.424231\n", "2340.0 1.420676\n", "2460.0 1.417179\n", "2580.0 1.413739\n", "2700.0 1.410353\n", "2820.0 1.407021\n", "2940.0 1.403742\n", "3060.0 1.400513\n", "3180.0 1.397335\n", "3300.0 1.394205\n", "3420.0 1.391124\n", "3540.0 1.388088\n", "3660.0 1.385099\n", "3780.0 1.382154\n", "3900.0 1.379252\n", "4020.0 1.376394\n", "4140.0 1.373576\n", "4260.0 1.370800\n", "4380.0 1.368064\n", "4500.0 1.365366\n", "4620.0 1.362707\n", "4740.0 1.360085\n", "4860.0 1.357500\n", "4980.0 1.354951\n", "5100.0 1.352437\n", "5220.0 1.349957\n", "5340.0 1.347511\n", "5460.0 1.345098\n", "5580.0 1.342717\n", "5700.0 1.340368\n", "5820.0 1.338050\n", "5940.0 1.335763\n", "wavelength : 500" ] }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sd.hygroscopicity.grown_size_distribution.optical_properties.parameters" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### AOD (aerosol optical depth)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A vertical profile of aerosol optical properties can be integrated to the AOD" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "execution": { "iopub.execute_input": "2023-11-28T22:22:29.135442Z", "iopub.status.busy": "2023-11-28T22:22:29.134418Z", "iopub.status.idle": "2023-11-28T22:22:29.147788Z", "shell.execute_reply": "2023-11-28T22:22:29.146001Z", "shell.execute_reply.started": "2023-11-28T22:22:29.135351Z" } }, "outputs": [ { "data": { "text/plain": [ "(7.599809165410463, 13.401056561321452)" ] }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sd.optical_properties.aod, sd.hygroscopicity.grown_size_distribution.optical_properties.aod" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "hide_input": false, "kernelspec": { "display_name": "py310telg", "language": "python", "name": "py310telg" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.13" }, "nav_menu": {}, "toc": { "colors": { "hover_highlight": "#DAA520", "running_highlight": "#FF0000", "selected_highlight": "#FFD700" }, "moveMenuLeft": true, "nav_menu": { "height": "387px", "width": "252px" }, "navigate_menu": true, "number_sections": true, "sideBar": true, "threshold": 4, "toc_cell": false, "toc_section_display": "block", "toc_window_display": true }, "toc_position": { "height": "960px", "left": "0px", "right": "2361.33px", "top": "107px", "width": "212px" } }, "nbformat": 4, "nbformat_minor": 4 }